- Previous Article
- DCDS Home
- This Issue
-
Next Article
Uniform attractors for non-autonomous plate equations with $ p $-Laplacian perturbation and critical nonlinearities
On the vanishing viscosity limit of a chemotaxis model
School of Mathematics and Statistics, Wuhan University, Computational Science Hubei Key Laboratory, Wuhan University, Wuhan 430072, China |
A vanishing viscosity problem for the Patlak-Keller-Segel model is studied in this paper. This is a parabolic-parabolic system in a bounded domain $ \Omega\subset \mathbb{R}^n $, with a vanishing viscosity $ \varepsilon\to 0 $. We show that if the initial value lies in $ W^{1, p} $ with $ p>\max\{2, n\} $, then there exists a unique solution $ (u_\varepsilon, v_\varepsilon) $ with its lifespan independent of $ \varepsilon $. Furthermore, as $ \varepsilon\rightarrow 0 $, $ (u_\varepsilon, v_\varepsilon) $ converges to the solution $ (u, v) $ of the limiting system in a suitable sense.
References:
[1] |
M. Bramanti, L. Brandolini, E. Lanconelli and F. Uguzzoni, Non-divergence equations structured on Hörmander vector fields: Heat kernels and Harnack inequalities, Mem. Amer. Math. Soc., 204 (2010).
doi: 10.1090/S0065-9266-09-00605-X. |
[2] |
L. Corrias, B. Perthame and H. Zaag,
A chemotaxis model motivated by angiogenesis, C. R. Math. Acad. Sci. Paris, 336 (2003), 141-146.
doi: 10.1016/S1631-073X(02)00008-0. |
[3] |
L. Corrias, B. Perthame and H. Zaag,
Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math., 72 (2004), 1-28.
doi: 10.1007/s00032-003-0026-x. |
[4] |
C. Deng and T. Li,
Well-posedness of a 3D parabolic-hyperbolic Keller-Segel system in the Sobolev space framework, J. Differential Equations, 257 (2014), 1311-1332.
doi: 10.1016/j.jde.2014.05.014. |
[5] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[6] |
L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998. |
[7] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[8] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. 1968. |
[9] |
D. Li, T. Li and K. Zhao,
On a hyperbolic-parabolic system modeling chemotaxis, Math. Models Methods Appl. Sci., 21 (2011), 1631-1650.
doi: 10.1142/S0218202511005519. |
[10] |
P. Li, Geometric Analysis, Cambridge Studies in Advanced Mathematics, 134. Cambridge University Press, Cambridge, 2012.
doi: 10.1017/CBO9781139105798.![]() ![]() ![]() |
[11] |
T. Li, R. H. Pan and K. Zhao,
Global dynamics of a hyperbolic-parabolic model arising from chemotaxis, SIAM J. Appl. Math., 72 (2012), 417-443.
doi: 10.1137/110829453. |
[12] |
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996.
doi: 10.1142/3302. |
[13] |
H. G. Othmer and A. Stevens,
Aggregation, blowup, and collapse: The ABCs of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044-1081.
doi: 10.1137/S0036139995288976. |
[14] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[15] |
H. Y. Peng, H. Y. Wen and C. J. Zhu,
Global well-posedness and zero diffusion limit of classical solutions to 3D conservation laws arising in chemotaxis, Z. Angew. Math. Phys., 65 (2014), 1167-1188.
doi: 10.1007/s00033-013-0378-1. |
[16] |
T. Suzuki, Free Energy and Self-Interacting Particles, Progress in Nonlinear Differential Equations and their Applications, 62. Birkhäuser Boston, Inc., Boston, MA, 2005.
doi: 10.1007/0-8176-4436-9. |
[17] |
M. E. Taylor, Partial Differential Equations III: Nonlinear Equations, Second edition. Applied Mathematical Sciences, 117. Springer, New York, 2011.
doi: 10.1007/978-1-4419-7049-7. |
[18] |
Z.-A. Wang and T. Hillen,
Shock formation in a chemotaxis model, Math. Methods Appl. Sci., 31 (2008), 45-70.
doi: 10.1002/mma.898. |
[19] |
Z.-A. Wang, Z. Y. Xiang and P. Yu,
Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis, J. Differential Equations, 260 (2016), 2225-2258.
doi: 10.1016/j.jde.2015.09.063. |
[20] |
Y. Yang, H. Chen and W. A. Liu,
On existence of global solutions and blow-up to a system of reaction diffusion equations modeling chemotaxis, SIAM J. Math. Anal., 33 (2001), 763-785.
doi: 10.1137/S0036141000337796. |
[21] |
Y. Yang, H. Chen, W. A. Liu and B. D. Sleeman,
The solvability of some chemotaxis systems, J. Differential Equations, 212 (2005), 432-451.
doi: 10.1016/j.jde.2005.01.002. |
[22] |
M. Zhang and C. J. Zhu,
Global existence of solutions to a hyperbolic-parabolic system, Proc. Amer. Math. Soc., 135 (2007), 1017-1027.
doi: 10.1090/S0002-9939-06-08773-9. |
show all references
References:
[1] |
M. Bramanti, L. Brandolini, E. Lanconelli and F. Uguzzoni, Non-divergence equations structured on Hörmander vector fields: Heat kernels and Harnack inequalities, Mem. Amer. Math. Soc., 204 (2010).
doi: 10.1090/S0065-9266-09-00605-X. |
[2] |
L. Corrias, B. Perthame and H. Zaag,
A chemotaxis model motivated by angiogenesis, C. R. Math. Acad. Sci. Paris, 336 (2003), 141-146.
doi: 10.1016/S1631-073X(02)00008-0. |
[3] |
L. Corrias, B. Perthame and H. Zaag,
Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math., 72 (2004), 1-28.
doi: 10.1007/s00032-003-0026-x. |
[4] |
C. Deng and T. Li,
Well-posedness of a 3D parabolic-hyperbolic Keller-Segel system in the Sobolev space framework, J. Differential Equations, 257 (2014), 1311-1332.
doi: 10.1016/j.jde.2014.05.014. |
[5] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[6] |
L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998. |
[7] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[8] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. 1968. |
[9] |
D. Li, T. Li and K. Zhao,
On a hyperbolic-parabolic system modeling chemotaxis, Math. Models Methods Appl. Sci., 21 (2011), 1631-1650.
doi: 10.1142/S0218202511005519. |
[10] |
P. Li, Geometric Analysis, Cambridge Studies in Advanced Mathematics, 134. Cambridge University Press, Cambridge, 2012.
doi: 10.1017/CBO9781139105798.![]() ![]() ![]() |
[11] |
T. Li, R. H. Pan and K. Zhao,
Global dynamics of a hyperbolic-parabolic model arising from chemotaxis, SIAM J. Appl. Math., 72 (2012), 417-443.
doi: 10.1137/110829453. |
[12] |
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996.
doi: 10.1142/3302. |
[13] |
H. G. Othmer and A. Stevens,
Aggregation, blowup, and collapse: The ABCs of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044-1081.
doi: 10.1137/S0036139995288976. |
[14] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[15] |
H. Y. Peng, H. Y. Wen and C. J. Zhu,
Global well-posedness and zero diffusion limit of classical solutions to 3D conservation laws arising in chemotaxis, Z. Angew. Math. Phys., 65 (2014), 1167-1188.
doi: 10.1007/s00033-013-0378-1. |
[16] |
T. Suzuki, Free Energy and Self-Interacting Particles, Progress in Nonlinear Differential Equations and their Applications, 62. Birkhäuser Boston, Inc., Boston, MA, 2005.
doi: 10.1007/0-8176-4436-9. |
[17] |
M. E. Taylor, Partial Differential Equations III: Nonlinear Equations, Second edition. Applied Mathematical Sciences, 117. Springer, New York, 2011.
doi: 10.1007/978-1-4419-7049-7. |
[18] |
Z.-A. Wang and T. Hillen,
Shock formation in a chemotaxis model, Math. Methods Appl. Sci., 31 (2008), 45-70.
doi: 10.1002/mma.898. |
[19] |
Z.-A. Wang, Z. Y. Xiang and P. Yu,
Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis, J. Differential Equations, 260 (2016), 2225-2258.
doi: 10.1016/j.jde.2015.09.063. |
[20] |
Y. Yang, H. Chen and W. A. Liu,
On existence of global solutions and blow-up to a system of reaction diffusion equations modeling chemotaxis, SIAM J. Math. Anal., 33 (2001), 763-785.
doi: 10.1137/S0036141000337796. |
[21] |
Y. Yang, H. Chen, W. A. Liu and B. D. Sleeman,
The solvability of some chemotaxis systems, J. Differential Equations, 212 (2005), 432-451.
doi: 10.1016/j.jde.2005.01.002. |
[22] |
M. Zhang and C. J. Zhu,
Global existence of solutions to a hyperbolic-parabolic system, Proc. Amer. Math. Soc., 135 (2007), 1017-1027.
doi: 10.1090/S0002-9939-06-08773-9. |
[1] |
Mihaela Negreanu, J. Ignacio Tello. On a Parabolic-ODE system of chemotaxis. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 279-292. doi: 10.3934/dcdss.2020016 |
[2] |
Liangchen Wang, Yuhuan Li, Chunlai Mu. Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 789-802. doi: 10.3934/dcds.2014.34.789 |
[3] |
Yilong Wang, Zhaoyin Xiang. Boundedness in a quasilinear 2D parabolic-parabolic attraction-repulsion chemotaxis system. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1953-1973. doi: 10.3934/dcdsb.2016031 |
[4] |
Etsushi Nakaguchi, Koichi Osaki. Global solutions and exponential attractors of a parabolic-parabolic system for chemotaxis with subquadratic degradation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2627-2646. doi: 10.3934/dcdsb.2013.18.2627 |
[5] |
Wenxian Shen, Shuwen Xue. Persistence and convergence in parabolic-parabolic chemotaxis system with logistic source on $ \mathbb{R}^{N} $. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2893-2925. doi: 10.3934/dcds.2022003 |
[6] |
Jie Zhao. A quasilinear parabolic-parabolic chemotaxis model with logistic source and singular sensitivity. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3487-3513. doi: 10.3934/dcdsb.2021193 |
[7] |
Monica Marras, Stella Vernier Piro, Giuseppe Viglialoro. Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system. Conference Publications, 2015, 2015 (special) : 809-816. doi: 10.3934/proc.2015.0809 |
[8] |
Kentarou Fujie, Chihiro Nishiyama, Tomomi Yokota. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with the sensitivity $v^{-1}S(u)$. Conference Publications, 2015, 2015 (special) : 464-472. doi: 10.3934/proc.2015.0464 |
[9] |
Piotr Biler, Ignacio Guerra, Grzegorz Karch. Large global-in-time solutions of the parabolic-parabolic Keller-Segel system on the plane. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2117-2126. doi: 10.3934/cpaa.2015.14.2117 |
[10] |
Karl Kunisch, Sérgio S. Rodrigues. Oblique projection based stabilizing feedback for nonautonomous coupled parabolic-ode systems. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6355-6389. doi: 10.3934/dcds.2019276 |
[11] |
Mengyao Ding, Xiangdong Zhao. $ L^\sigma $-measure criteria for boundedness in a quasilinear parabolic-parabolic Keller-Segel system with supercritical sensitivity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5297-5315. doi: 10.3934/dcdsb.2019059 |
[12] |
Youshan Tao, Lihe Wang, Zhi-An Wang. Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 821-845. doi: 10.3934/dcdsb.2013.18.821 |
[13] |
Wenxian Shen, Shuwen Xue. Spreading speeds of a parabolic-parabolic chemotaxis model with logistic source on $ \mathbb{R}^{N} $. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022074 |
[14] |
Mengyao Ding, Wei Wang. Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4665-4684. doi: 10.3934/dcdsb.2018328 |
[15] |
Tian Xiang. Dynamics in a parabolic-elliptic chemotaxis system with growth source and nonlinear secretion. Communications on Pure and Applied Analysis, 2019, 18 (1) : 255-284. doi: 10.3934/cpaa.2019014 |
[16] |
Yilong Wang, Xuande Zhang. On a parabolic-elliptic chemotaxis-growth system with nonlinear diffusion. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 321-328. doi: 10.3934/dcdss.2020018 |
[17] |
Bao-Zhu Guo, Liang Zhang. Local exact controllability to positive trajectory for parabolic system of chemotaxis. Mathematical Control and Related Fields, 2016, 6 (1) : 143-165. doi: 10.3934/mcrf.2016.6.143 |
[18] |
Wei Wang, Yan Li, Hao Yu. Global boundedness in higher dimensions for a fully parabolic chemotaxis system with singular sensitivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3663-3669. doi: 10.3934/dcdsb.2017147 |
[19] |
Xie Li, Yilong Wang. Boundedness in a two-species chemotaxis parabolic system with two chemicals. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2717-2729. doi: 10.3934/dcdsb.2017132 |
[20] |
Ke Lin, Chunlai Mu. Global dynamics in a fully parabolic chemotaxis system with logistic source. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5025-5046. doi: 10.3934/dcds.2016018 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]