April  2020, 40(4): 1989-2009. doi: 10.3934/dcds.2020102

Isentropes and Lyapunov exponents

Department of Analysis, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, 1117, Budapest, Hungary, ZB's ORCID ID: 0000-0001-5481-8797

* Corresponding author

Received  April 2018 Revised  July 2019 Published  January 2020

Fund Project: ZB was supported by the Hungarian National Foundation for Scientific Research Grant 124003. During the preparation of this paper this author was a visiting researcher at the Rényi Institute.
GK was supported by the Hungarian National Foundation for Scientific Research Grant 124749.

We consider skew tent maps $ T_{ { \alpha }, { \beta }}(x) $ such that $ ( \alpha, \beta)\in[0, 1]^{2} $ is the turning point of $ T _{\alpha, \beta} $, that is, $ T_{ { \alpha }, { \beta }} = \frac{ { \beta }}{ { \alpha }}x $ for $ 0\leq x \leq { \alpha } $ and $ T_{ { \alpha }, { \beta }}(x) = \frac{ { \beta }}{1- { \alpha }}(1-x) $ for $ { \alpha }<x\leq 1 $. We denote by $ \underline{M} = K( \alpha, \beta) $ the kneading sequence of $ T _{\alpha, \beta} $, by $ h( \alpha, \beta) $ its topological entropy and $ \Lambda = \Lambda_{\alpha, \beta} $ denotes its Lyapunov exponent. For a given kneading squence $ \underline{M} $ we consider isentropes (or equi-topological entropy, or equi-kneading curves), $ ( \alpha, \Psi_{ \underline{M}}( \alpha)) $ such that $ K( \alpha, \Psi_{ \underline{M}}( \alpha)) = \underline{M} $. On these curves the topological entropy $ h( \alpha, \Psi_{ \underline{M}}( \alpha)) $ is constant.

We show that $ \Psi_{ \underline{M}}'( \alpha) $ exists and the Lyapunov exponent $ \Lambda_{\alpha, \beta} $ can be expressed by using the slope of the tangent to the isentrope. Since this latter can be computed by considering partial derivatives of an auxiliary function $ \Theta_{ \underline{M}} $, a series depending on the kneading sequence which converges at an exponential rate, this provides an efficient new method of finding the value of the Lyapunov exponent of these maps.

Citation: Zoltán Buczolich, Gabriella Keszthelyi. Isentropes and Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2020, 40 (4) : 1989-2009. doi: 10.3934/dcds.2020102
References:
[1]

V. Baladi and D. Smania, Linear response formula for piecewise expanding unimodal maps, Nonlinearity, 21 (2008), 677-711.  doi: 10.1088/0951-7715/21/4/003.  Google Scholar

[2]

V. Baladi and D. Smania, Smooth deformations of piecewise expanding unimodal maps, Discrete Contin. Dyn. Syst., 23 (2009), 685-703.  doi: 10.3934/dcds.2009.23.685.  Google Scholar

[3]

L. Billings and E. M. Bollt, Probability density functions of some skew tent maps, Chaos Solitons Fractals, 12 (2001), 365-376.  doi: 10.1016/S0960-0779(99)00204-0.  Google Scholar

[4]

A. Boyarsky and P. Góra, Laws of Chaos: Invariant Measures and Dynamical Systems in One Dimension, Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1997. doi: 10.1007/978-1-4612-2024-4.  Google Scholar

[5]

H. Bruin and S. van Strien, On the structure of isentropes of polynomial maps, Dyn. Syst., 28 (2013), 381-392.  doi: 10.1080/14689367.2013.822458.  Google Scholar

[6]

Z. Buczolich and G. Keszthelyi, Equi-topological entropy curves for skew tent maps in the square, Math. Slovaca, 67 (2017), 1577-1594.  doi: 10.1515/ms-2017-0072.  Google Scholar

[7]

Z. Buczolich and G. Keszthelyi, Tangents of Isentropes of skew tent maps in the square, (in preparation). Google Scholar

[8]

P. Collet and J.-P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Progress in Physics, 1. Birkhäuser, Boston, Mass., 1980.  Google Scholar

[9]

G. Keller, Stochastic stability in some chaotic dynamical systems, Monatsh. Math., 94 (1982), 313-333.  doi: 10.1007/BF01667385.  Google Scholar

[10]

D. J. Lai and G. R. Chen, On statistical properties of the Lyapunov exponent of the generalized skew tent map, Stochastic Anal. Appl., 20 (2002), 375-388.  doi: 10.1081/SAP-120003440.  Google Scholar

[11]

A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc., 186 (1974), 481-488.  doi: 10.1090/S0002-9947-1973-0335758-1.  Google Scholar

[12]

M. C. Mackey and M. Tyran-Kamińska, Central limit theorem behavior in the skew tent map, Chaos Solitons Fractals, 38 (2008), 789-805.  doi: 10.1016/j.chaos.2007.01.013.  Google Scholar

[13]

J. Milnor and W. Thurston, On iterated maps of the interval, Dynamical Systems (College Park, MD, 1986–87), Lecture Notes in Math., Springer, Berlin, 1342 (1988), 465-563.  doi: 10.1007/BFb0082847.  Google Scholar

[14]

J. Milnor and C. Tresser, On entropy and monotonicity for real cubic maps, With an appendix by Adrien Douady and Pierrette Sentenac. Comm. Math. Phys., 209 (2000), 123-178.  doi: 10.1007/s002200050018.  Google Scholar

[15]

M. Misiurewicz and E. Visinescu, Kneading sequences of skew tent maps, Ann. Inst. Henri Poincaré, Probab. Stat., 27 (1991), 125-140.   Google Scholar

[16]

A. Radulescu, The connected isentropes conjecture in a space of quartic polynomials, Discrete Contin. Dyn. Syst., 19 (2007), 139-175.  doi: 10.3934/dcds.2007.19.139.  Google Scholar

show all references

References:
[1]

V. Baladi and D. Smania, Linear response formula for piecewise expanding unimodal maps, Nonlinearity, 21 (2008), 677-711.  doi: 10.1088/0951-7715/21/4/003.  Google Scholar

[2]

V. Baladi and D. Smania, Smooth deformations of piecewise expanding unimodal maps, Discrete Contin. Dyn. Syst., 23 (2009), 685-703.  doi: 10.3934/dcds.2009.23.685.  Google Scholar

[3]

L. Billings and E. M. Bollt, Probability density functions of some skew tent maps, Chaos Solitons Fractals, 12 (2001), 365-376.  doi: 10.1016/S0960-0779(99)00204-0.  Google Scholar

[4]

A. Boyarsky and P. Góra, Laws of Chaos: Invariant Measures and Dynamical Systems in One Dimension, Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1997. doi: 10.1007/978-1-4612-2024-4.  Google Scholar

[5]

H. Bruin and S. van Strien, On the structure of isentropes of polynomial maps, Dyn. Syst., 28 (2013), 381-392.  doi: 10.1080/14689367.2013.822458.  Google Scholar

[6]

Z. Buczolich and G. Keszthelyi, Equi-topological entropy curves for skew tent maps in the square, Math. Slovaca, 67 (2017), 1577-1594.  doi: 10.1515/ms-2017-0072.  Google Scholar

[7]

Z. Buczolich and G. Keszthelyi, Tangents of Isentropes of skew tent maps in the square, (in preparation). Google Scholar

[8]

P. Collet and J.-P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Progress in Physics, 1. Birkhäuser, Boston, Mass., 1980.  Google Scholar

[9]

G. Keller, Stochastic stability in some chaotic dynamical systems, Monatsh. Math., 94 (1982), 313-333.  doi: 10.1007/BF01667385.  Google Scholar

[10]

D. J. Lai and G. R. Chen, On statistical properties of the Lyapunov exponent of the generalized skew tent map, Stochastic Anal. Appl., 20 (2002), 375-388.  doi: 10.1081/SAP-120003440.  Google Scholar

[11]

A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc., 186 (1974), 481-488.  doi: 10.1090/S0002-9947-1973-0335758-1.  Google Scholar

[12]

M. C. Mackey and M. Tyran-Kamińska, Central limit theorem behavior in the skew tent map, Chaos Solitons Fractals, 38 (2008), 789-805.  doi: 10.1016/j.chaos.2007.01.013.  Google Scholar

[13]

J. Milnor and W. Thurston, On iterated maps of the interval, Dynamical Systems (College Park, MD, 1986–87), Lecture Notes in Math., Springer, Berlin, 1342 (1988), 465-563.  doi: 10.1007/BFb0082847.  Google Scholar

[14]

J. Milnor and C. Tresser, On entropy and monotonicity for real cubic maps, With an appendix by Adrien Douady and Pierrette Sentenac. Comm. Math. Phys., 209 (2000), 123-178.  doi: 10.1007/s002200050018.  Google Scholar

[15]

M. Misiurewicz and E. Visinescu, Kneading sequences of skew tent maps, Ann. Inst. Henri Poincaré, Probab. Stat., 27 (1991), 125-140.   Google Scholar

[16]

A. Radulescu, The connected isentropes conjecture in a space of quartic polynomials, Discrete Contin. Dyn. Syst., 19 (2007), 139-175.  doi: 10.3934/dcds.2007.19.139.  Google Scholar

Figure 1.  Tangents to isentropes computed from $ \gamma $ and from $ \Theta $
Figure 2.  More tangents to isentropes computed from $ \gamma $ and from $ \Theta $
Figure 3.  Isentropes and tangents computed from $ \gamma $
Figure 4.  Illustration for the proofs of Proposition 12 and Theorem 2
Table 1.  Tangents calculated from $ \Theta $ and $ \gamma $
$ \alpha $ $ \beta $ $ \gamma $ $ \Psi_{\underline{M}}' $$ \gamma $ $ \Psi_{\underline{M}}' $$ \Theta $
.3 .8 .20444 -.36406 -.36452
.49 .56 .30996 -.40344 -.4244
.5 .7 .27034 -.64303 -.64064
.5 .8 .26918 -.73861 -.73739
.6 .75 .35597 -.76258 -.76132
.6 .9 .47736 -.4599 -.45991
$ \alpha $ $ \beta $ $ \gamma $ $ \Psi_{\underline{M}}' $$ \gamma $ $ \Psi_{\underline{M}}' $$ \Theta $
.3 .8 .20444 -.36406 -.36452
.49 .56 .30996 -.40344 -.4244
.5 .7 .27034 -.64303 -.64064
.5 .8 .26918 -.73861 -.73739
.6 .75 .35597 -.76258 -.76132
.6 .9 .47736 -.4599 -.45991
[1]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[2]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[3]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021  doi: 10.3934/fods.2021005

[4]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[5]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[6]

Ethan Akin, Julia Saccamano. Generalized intransitive dice II: Partition constructions. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021005

[7]

Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003

[8]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[9]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[10]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[11]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[12]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[13]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (140)
  • HTML views (91)
  • Cited by (0)

Other articles
by authors

[Back to Top]