
-
Previous Article
Sectional-hyperbolic Lyapunov stable sets
- DCDS Home
- This Issue
- Next Article
Isentropes and Lyapunov exponents
Department of Analysis, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, 1117, Budapest, Hungary, ZB's ORCID ID: 0000-0001-5481-8797 |
We consider skew tent maps $ T_{ { \alpha }, { \beta }}(x) $ such that $ ( \alpha, \beta)\in[0, 1]^{2} $ is the turning point of $ T _{\alpha, \beta} $, that is, $ T_{ { \alpha }, { \beta }} = \frac{ { \beta }}{ { \alpha }}x $ for $ 0\leq x \leq { \alpha } $ and $ T_{ { \alpha }, { \beta }}(x) = \frac{ { \beta }}{1- { \alpha }}(1-x) $ for $ { \alpha }<x\leq 1 $. We denote by $ \underline{M} = K( \alpha, \beta) $ the kneading sequence of $ T _{\alpha, \beta} $, by $ h( \alpha, \beta) $ its topological entropy and $ \Lambda = \Lambda_{\alpha, \beta} $ denotes its Lyapunov exponent. For a given kneading squence $ \underline{M} $ we consider isentropes (or equi-topological entropy, or equi-kneading curves), $ ( \alpha, \Psi_{ \underline{M}}( \alpha)) $ such that $ K( \alpha, \Psi_{ \underline{M}}( \alpha)) = \underline{M} $. On these curves the topological entropy $ h( \alpha, \Psi_{ \underline{M}}( \alpha)) $ is constant.
We show that $ \Psi_{ \underline{M}}'( \alpha) $ exists and the Lyapunov exponent $ \Lambda_{\alpha, \beta} $ can be expressed by using the slope of the tangent to the isentrope. Since this latter can be computed by considering partial derivatives of an auxiliary function $ \Theta_{ \underline{M}} $, a series depending on the kneading sequence which converges at an exponential rate, this provides an efficient new method of finding the value of the Lyapunov exponent of these maps.
References:
[1] |
V. Baladi and D. Smania,
Linear response formula for piecewise expanding unimodal maps, Nonlinearity, 21 (2008), 677-711.
doi: 10.1088/0951-7715/21/4/003. |
[2] |
V. Baladi and D. Smania,
Smooth deformations of piecewise expanding unimodal maps, Discrete Contin. Dyn. Syst., 23 (2009), 685-703.
doi: 10.3934/dcds.2009.23.685. |
[3] |
L. Billings and E. M. Bollt,
Probability density functions of some skew tent maps, Chaos Solitons Fractals, 12 (2001), 365-376.
doi: 10.1016/S0960-0779(99)00204-0. |
[4] |
A. Boyarsky and P. Góra, Laws of Chaos: Invariant Measures and Dynamical Systems in One Dimension, Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1997.
doi: 10.1007/978-1-4612-2024-4. |
[5] |
H. Bruin and S. van Strien,
On the structure of isentropes of polynomial maps, Dyn. Syst., 28 (2013), 381-392.
doi: 10.1080/14689367.2013.822458. |
[6] |
Z. Buczolich and G. Keszthelyi,
Equi-topological entropy curves for skew tent maps in the square, Math. Slovaca, 67 (2017), 1577-1594.
doi: 10.1515/ms-2017-0072. |
[7] |
Z. Buczolich and G. Keszthelyi, Tangents of Isentropes of skew tent maps in the square, (in preparation). |
[8] |
P. Collet and J.-P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Progress in Physics, 1. Birkhäuser, Boston, Mass., 1980. |
[9] |
G. Keller,
Stochastic stability in some chaotic dynamical systems, Monatsh. Math., 94 (1982), 313-333.
doi: 10.1007/BF01667385. |
[10] |
D. J. Lai and G. R. Chen,
On statistical properties of the Lyapunov exponent of the generalized skew tent map, Stochastic Anal. Appl., 20 (2002), 375-388.
doi: 10.1081/SAP-120003440. |
[11] |
A. Lasota and J. A. Yorke,
On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc., 186 (1974), 481-488.
doi: 10.1090/S0002-9947-1973-0335758-1. |
[12] |
M. C. Mackey and M. Tyran-Kamińska,
Central limit theorem behavior in the skew tent map, Chaos Solitons Fractals, 38 (2008), 789-805.
doi: 10.1016/j.chaos.2007.01.013. |
[13] |
J. Milnor and W. Thurston,
On iterated maps of the interval, Dynamical Systems (College Park, MD, 1986–87), Lecture Notes in Math., Springer, Berlin, 1342 (1988), 465-563.
doi: 10.1007/BFb0082847. |
[14] |
J. Milnor and C. Tresser,
On entropy and monotonicity for real cubic maps, With an appendix by Adrien Douady and Pierrette Sentenac. Comm. Math. Phys., 209 (2000), 123-178.
doi: 10.1007/s002200050018. |
[15] |
M. Misiurewicz and E. Visinescu,
Kneading sequences of skew tent maps, Ann. Inst. Henri Poincaré, Probab. Stat., 27 (1991), 125-140.
|
[16] |
A. Radulescu,
The connected isentropes conjecture in a space of quartic polynomials, Discrete Contin. Dyn. Syst., 19 (2007), 139-175.
doi: 10.3934/dcds.2007.19.139. |
show all references
References:
[1] |
V. Baladi and D. Smania,
Linear response formula for piecewise expanding unimodal maps, Nonlinearity, 21 (2008), 677-711.
doi: 10.1088/0951-7715/21/4/003. |
[2] |
V. Baladi and D. Smania,
Smooth deformations of piecewise expanding unimodal maps, Discrete Contin. Dyn. Syst., 23 (2009), 685-703.
doi: 10.3934/dcds.2009.23.685. |
[3] |
L. Billings and E. M. Bollt,
Probability density functions of some skew tent maps, Chaos Solitons Fractals, 12 (2001), 365-376.
doi: 10.1016/S0960-0779(99)00204-0. |
[4] |
A. Boyarsky and P. Góra, Laws of Chaos: Invariant Measures and Dynamical Systems in One Dimension, Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1997.
doi: 10.1007/978-1-4612-2024-4. |
[5] |
H. Bruin and S. van Strien,
On the structure of isentropes of polynomial maps, Dyn. Syst., 28 (2013), 381-392.
doi: 10.1080/14689367.2013.822458. |
[6] |
Z. Buczolich and G. Keszthelyi,
Equi-topological entropy curves for skew tent maps in the square, Math. Slovaca, 67 (2017), 1577-1594.
doi: 10.1515/ms-2017-0072. |
[7] |
Z. Buczolich and G. Keszthelyi, Tangents of Isentropes of skew tent maps in the square, (in preparation). |
[8] |
P. Collet and J.-P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Progress in Physics, 1. Birkhäuser, Boston, Mass., 1980. |
[9] |
G. Keller,
Stochastic stability in some chaotic dynamical systems, Monatsh. Math., 94 (1982), 313-333.
doi: 10.1007/BF01667385. |
[10] |
D. J. Lai and G. R. Chen,
On statistical properties of the Lyapunov exponent of the generalized skew tent map, Stochastic Anal. Appl., 20 (2002), 375-388.
doi: 10.1081/SAP-120003440. |
[11] |
A. Lasota and J. A. Yorke,
On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc., 186 (1974), 481-488.
doi: 10.1090/S0002-9947-1973-0335758-1. |
[12] |
M. C. Mackey and M. Tyran-Kamińska,
Central limit theorem behavior in the skew tent map, Chaos Solitons Fractals, 38 (2008), 789-805.
doi: 10.1016/j.chaos.2007.01.013. |
[13] |
J. Milnor and W. Thurston,
On iterated maps of the interval, Dynamical Systems (College Park, MD, 1986–87), Lecture Notes in Math., Springer, Berlin, 1342 (1988), 465-563.
doi: 10.1007/BFb0082847. |
[14] |
J. Milnor and C. Tresser,
On entropy and monotonicity for real cubic maps, With an appendix by Adrien Douady and Pierrette Sentenac. Comm. Math. Phys., 209 (2000), 123-178.
doi: 10.1007/s002200050018. |
[15] |
M. Misiurewicz and E. Visinescu,
Kneading sequences of skew tent maps, Ann. Inst. Henri Poincaré, Probab. Stat., 27 (1991), 125-140.
|
[16] |
A. Radulescu,
The connected isentropes conjecture in a space of quartic polynomials, Discrete Contin. Dyn. Syst., 19 (2007), 139-175.
doi: 10.3934/dcds.2007.19.139. |


.3 | .8 | .20444 | -.36406 | -.36452 |
.49 | .56 | .30996 | -.40344 | -.4244 |
.5 | .7 | .27034 | -.64303 | -.64064 |
.5 | .8 | .26918 | -.73861 | -.73739 |
.6 | .75 | .35597 | -.76258 | -.76132 |
.6 | .9 | .47736 | -.4599 | -.45991 |
.3 | .8 | .20444 | -.36406 | -.36452 |
.49 | .56 | .30996 | -.40344 | -.4244 |
.5 | .7 | .27034 | -.64303 | -.64064 |
.5 | .8 | .26918 | -.73861 | -.73739 |
.6 | .75 | .35597 | -.76258 | -.76132 |
.6 | .9 | .47736 | -.4599 | -.45991 |
[1] |
Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3797-3816. doi: 10.3934/dcds.2021017 |
[2] |
Tao Wang, Yu Huang. Weighted topological and measure-theoretic entropy. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3941-3967. doi: 10.3934/dcds.2019159 |
[3] |
Gabriel Fuhrmann, Jing Wang. Rectifiability of a class of invariant measures with one non-vanishing Lyapunov exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5747-5761. doi: 10.3934/dcds.2017249 |
[4] |
Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295 |
[5] |
Katrin Gelfert. Lower bounds for the topological entropy. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555 |
[6] |
Jaume Llibre. Brief survey on the topological entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363 |
[7] |
Christian Wolf. A shift map with a discontinuous entropy function. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012 |
[8] |
Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 545-557 . doi: 10.3934/dcds.2011.31.545 |
[9] |
Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547 |
[10] |
Jane Hawkins, Michael Taylor. The maximal entropy measure of Fatou boundaries. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4421-4431. doi: 10.3934/dcds.2018192 |
[11] |
Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201 |
[12] |
Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827 |
[13] |
Lluís Alsedà, David Juher, Francesc Mañosas. Forward triplets and topological entropy on trees. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 623-641. doi: 10.3934/dcds.2021131 |
[14] |
Janusz Mierczyński, Wenxian Shen. Formulas for generalized principal Lyapunov exponent for parabolic PDEs. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1189-1199. doi: 10.3934/dcdss.2016048 |
[15] |
Pedro Duarte, Silvius Klein, Manuel Santos. A random cocycle with non Hölder Lyapunov exponent. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4841-4861. doi: 10.3934/dcds.2019197 |
[16] |
Sanjeeva Balasuriya. Uncertainty in finite-time Lyapunov exponent computations. Journal of Computational Dynamics, 2020, 7 (2) : 313-337. doi: 10.3934/jcd.2020013 |
[17] |
Donald Ornstein, Benjamin Weiss. Entropy is the only finitely observable invariant. Journal of Modern Dynamics, 2007, 1 (1) : 93-105. doi: 10.3934/jmd.2007.1.93 |
[18] |
Hsuan-Wen Su. Finding invariant tori with Poincare's map. Communications on Pure and Applied Analysis, 2008, 7 (2) : 433-443. doi: 10.3934/cpaa.2008.7.433 |
[19] |
James P. Kelly, Kevin McGoff. Entropy conjugacy for Markov multi-maps of the interval. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2071-2094. doi: 10.3934/dcds.2020353 |
[20] |
Erik M. Bollt, Joseph D. Skufca, Stephen J . McGregor. Control entropy: A complexity measure for nonstationary signals. Mathematical Biosciences & Engineering, 2009, 6 (1) : 1-25. doi: 10.3934/mbe.2009.6.1 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]