In hyperbolic dynamics, a well-known result is: every hyperbolic Lyapunov stable set, is attracting; it's natural to wonder if this result is maintained in the sectional-hyperbolic dynamics. This question is still open, although some partial results have been presented. We will prove that all sectional-hyperbolic transitive Lyapunov stable set of codimension one of a vector field $ X $ over a compact manifold, with unique singularity Lorenz-like, which is of boundary-type, is an attractor of $ X $.
Citation: |
[1] |
V. Araujo and M. J. Pacifico, Three-Dimensional Flows, A Series of Modern Surveys in Mathematics, 53. Springer, Heidelberg, 2010.
doi: 10.1007/978-3-642-11414-4.![]() ![]() ![]() |
[2] |
A. Arbieto and C. A. Morales, A dichotomy for higher-dimensional flows, Proc. Amer. Math. Soc., 141 (2013), 2817-2827.
doi: 10.1090/S0002-9939-2013-11536-4.![]() ![]() ![]() |
[3] |
A. Arbieto, A. M. Lopez Barragán and C. Morales, Homoclinic classes for sectional-hyperbolic sets, Kyoto Journal of Mathematics, 56 (2016), 531-538.
doi: 10.1215/21562261-3600157.![]() ![]() ![]() |
[4] |
S. Bautista and C. Morales, Lectures on Sectional-Anosov Flows, Preprint IMPA Serie D 84, 2011.
![]() |
[5] |
S. Bautista and C. Morales, A sectional-Anosov connecting lemma, Ergodic Theory Dynam. Systems, 30 (2010), 339-359.
doi: 10.1017/S0143385709000157.![]() ![]() ![]() |
[6] |
S. Bautista and C. Morales, Characterizing omega-limit sets which are closed orbits, J. Differential Equations, 245 (2008), 637-652.
doi: 10.1016/j.jde.2007.11.007.![]() ![]() ![]() |
[7] |
S. Bautista and C. Morales, Recent progress on sectional-hyperbolic systems, Synamical Systems: An international Journal., 30 (2015), 369-382.
doi: 10.1080/14689367.2015.1056093.![]() ![]() ![]() |
[8] |
S. Bautista, V. Sales and Y. Sánchez, Sectional connecting lema, preprint, arXiv: 1804.00646.
![]() |
[9] |
M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583. Springer-Verlag, Berlin-New York, 1977.
![]() ![]() |
[10] |
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54. Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511809187.![]() ![]() ![]() |
[11] |
C. A. Morales and M. J. Pacifico, A dichotomy for three-dimensional vector fields, Ergodic Theory Dynam. Systems, 23 (2003), 1575-1600.
doi: 10.1017/S0143385702001621.![]() ![]() ![]() |