-
Previous Article
A class of anisotropic expanding curvature flows
- DCDS Home
- This Issue
-
Next Article
Isentropes and Lyapunov exponents
Sectional-hyperbolic Lyapunov stable sets
Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá, Colombia |
In hyperbolic dynamics, a well-known result is: every hyperbolic Lyapunov stable set, is attracting; it's natural to wonder if this result is maintained in the sectional-hyperbolic dynamics. This question is still open, although some partial results have been presented. We will prove that all sectional-hyperbolic transitive Lyapunov stable set of codimension one of a vector field $ X $ over a compact manifold, with unique singularity Lorenz-like, which is of boundary-type, is an attractor of $ X $.
References:
[1] |
V. Araujo and M. J. Pacifico, Three-Dimensional Flows, A Series of Modern Surveys in Mathematics, 53. Springer, Heidelberg, 2010.
doi: 10.1007/978-3-642-11414-4. |
[2] |
A. Arbieto and C. A. Morales,
A dichotomy for higher-dimensional flows, Proc. Amer. Math. Soc., 141 (2013), 2817-2827.
doi: 10.1090/S0002-9939-2013-11536-4. |
[3] |
A. Arbieto, A. M. Lopez Barragán and C. Morales,
Homoclinic classes for sectional-hyperbolic sets, Kyoto Journal of Mathematics, 56 (2016), 531-538.
doi: 10.1215/21562261-3600157. |
[4] |
S. Bautista and C. Morales, Lectures on Sectional-Anosov Flows, Preprint IMPA Serie D 84, 2011. |
[5] |
S. Bautista and C. Morales,
A sectional-Anosov connecting lemma, Ergodic Theory Dynam. Systems, 30 (2010), 339-359.
doi: 10.1017/S0143385709000157. |
[6] |
S. Bautista and C. Morales,
Characterizing omega-limit sets which are closed orbits, J. Differential Equations, 245 (2008), 637-652.
doi: 10.1016/j.jde.2007.11.007. |
[7] |
S. Bautista and C. Morales,
Recent progress on sectional-hyperbolic systems, Synamical Systems: An international Journal., 30 (2015), 369-382.
doi: 10.1080/14689367.2015.1056093. |
[8] |
S. Bautista, V. Sales and Y. Sánchez, Sectional connecting lema, preprint, arXiv: 1804.00646. |
[9] |
M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583. Springer-Verlag, Berlin-New York, 1977. |
[10] |
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54. Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511809187.![]() ![]() ![]() |
[11] |
C. A. Morales and M. J. Pacifico,
A dichotomy for three-dimensional vector fields, Ergodic Theory Dynam. Systems, 23 (2003), 1575-1600.
doi: 10.1017/S0143385702001621. |
show all references
References:
[1] |
V. Araujo and M. J. Pacifico, Three-Dimensional Flows, A Series of Modern Surveys in Mathematics, 53. Springer, Heidelberg, 2010.
doi: 10.1007/978-3-642-11414-4. |
[2] |
A. Arbieto and C. A. Morales,
A dichotomy for higher-dimensional flows, Proc. Amer. Math. Soc., 141 (2013), 2817-2827.
doi: 10.1090/S0002-9939-2013-11536-4. |
[3] |
A. Arbieto, A. M. Lopez Barragán and C. Morales,
Homoclinic classes for sectional-hyperbolic sets, Kyoto Journal of Mathematics, 56 (2016), 531-538.
doi: 10.1215/21562261-3600157. |
[4] |
S. Bautista and C. Morales, Lectures on Sectional-Anosov Flows, Preprint IMPA Serie D 84, 2011. |
[5] |
S. Bautista and C. Morales,
A sectional-Anosov connecting lemma, Ergodic Theory Dynam. Systems, 30 (2010), 339-359.
doi: 10.1017/S0143385709000157. |
[6] |
S. Bautista and C. Morales,
Characterizing omega-limit sets which are closed orbits, J. Differential Equations, 245 (2008), 637-652.
doi: 10.1016/j.jde.2007.11.007. |
[7] |
S. Bautista and C. Morales,
Recent progress on sectional-hyperbolic systems, Synamical Systems: An international Journal., 30 (2015), 369-382.
doi: 10.1080/14689367.2015.1056093. |
[8] |
S. Bautista, V. Sales and Y. Sánchez, Sectional connecting lema, preprint, arXiv: 1804.00646. |
[9] |
M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583. Springer-Verlag, Berlin-New York, 1977. |
[10] |
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54. Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511809187.![]() ![]() ![]() |
[11] |
C. A. Morales and M. J. Pacifico,
A dichotomy for three-dimensional vector fields, Ergodic Theory Dynam. Systems, 23 (2003), 1575-1600.
doi: 10.1017/S0143385702001621. |
[1] |
Enoch Humberto Apaza Calla, Bulmer Mejia Garcia, Carlos Arnoldo Morales Rojas. Topological properties of sectional-Anosov flows. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4735-4741. doi: 10.3934/dcds.2015.35.4735 |
[2] |
Carlos H. Vásquez. Stable ergodicity for partially hyperbolic attractors with positive central Lyapunov exponents. Journal of Modern Dynamics, 2009, 3 (2) : 233-251. doi: 10.3934/jmd.2009.3.233 |
[3] |
Carlos Arnoldo Morales. Strong stable manifolds for sectional-hyperbolic sets. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 553-560. doi: 10.3934/dcds.2007.17.553 |
[4] |
Stefanie Hittmeyer, Bernd Krauskopf, Hinke M. Osinga, Katsutoshi Shinohara. How to identify a hyperbolic set as a blender. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6815-6836. doi: 10.3934/dcds.2020295 |
[5] |
Andrey Gogolev, Ali Tahzibi. Center Lyapunov exponents in partially hyperbolic dynamics. Journal of Modern Dynamics, 2014, 8 (3&4) : 549-576. doi: 10.3934/jmd.2014.8.549 |
[6] |
M. A. Efendiev. On the compactness of the stable set for rate independent processes. Communications on Pure and Applied Analysis, 2003, 2 (4) : 495-509. doi: 10.3934/cpaa.2003.2.495 |
[7] |
Keith Burns, Dmitry Dolgopyat, Yakov Pesin, Mark Pollicott. Stable ergodicity for partially hyperbolic attractors with negative central exponents. Journal of Modern Dynamics, 2008, 2 (1) : 63-81. doi: 10.3934/jmd.2008.2.63 |
[8] |
B. San Martín, Kendry J. Vivas. Asymptotically sectional-hyperbolic attractors. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4057-4071. doi: 10.3934/dcds.2019163 |
[9] |
Serafin Bautista, Carlos A. Morales. On the intersection of sectional-hyperbolic sets. Journal of Modern Dynamics, 2015, 9: 203-218. doi: 10.3934/jmd.2015.9.203 |
[10] |
Zheng Yin, Ercai Chen. Conditional variational principle for the irregular set in some nonuniformly hyperbolic systems. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6581-6597. doi: 10.3934/dcds.2016085 |
[11] |
Lan Wen. On the preperiodic set. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 237-241. doi: 10.3934/dcds.2000.6.237 |
[12] |
François Berteloot, Tien-Cuong Dinh. The Mandelbrot set is the shadow of a Julia set. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6611-6633. doi: 10.3934/dcds.2020262 |
[13] |
Marcin Studniarski. Finding all minimal elements of a finite partially ordered set by genetic algorithm with a prescribed probability. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 389-398. doi: 10.3934/naco.2011.1.389 |
[14] |
Mauricio Poletti. Stably positive Lyapunov exponents for symplectic linear cocycles over partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5163-5188. doi: 10.3934/dcds.2018228 |
[15] |
Michinori Ishiwata. Existence of a stable set for some nonlinear parabolic equation involving critical Sobolev exponent. Conference Publications, 2005, 2005 (Special) : 443-452. doi: 10.3934/proc.2005.2005.443 |
[16] |
Kai Liu, Zhi Li. Global attracting set, exponential decay and stability in distribution of neutral SPDEs driven by additive $\alpha$-stable processes. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3551-3573. doi: 10.3934/dcdsb.2016110 |
[17] |
A. M. López. Finiteness and existence of attractors and repellers on sectional hyperbolic sets. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 337-354. doi: 10.3934/dcds.2017014 |
[18] |
James W. Cannon, Mark H. Meilstrup, Andreas Zastrow. The period set of a map from the Cantor set to itself. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2667-2679. doi: 10.3934/dcds.2013.33.2667 |
[19] |
Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390 |
[20] |
Yoshikazu Giga, Hiroyoshi Mitake, Hung V. Tran. Remarks on large time behavior of level-set mean curvature flow equations with driving and source terms. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3983-3999. doi: 10.3934/dcdsb.2019228 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]