In this paper, we consider an expanding flow of smooth, closed, uniformly convex hypersurfaces in Euclidean $ R^{n+1} $ with speed $ u^\alpha\sigma_k^\beta $ firstly, where $ u $ is support function of the hypersurface, $ \alpha, \beta \in R^1 $, and $ \beta>0 $, $ \sigma_k $ is the $ k $-th symmetric polynomial of the principal curvature radii of the hypersurface, $ k $ is an integer and $ 1\le k\le n $. For $ \alpha\le1-k\beta $, $ \beta>\frac{1}{k} $ we prove that the flow has a unique smooth and uniformly convex solution for all time, and converges smoothly after normalisation, to a sphere centered at the origin. Moreover, for $ \alpha\le1-k\beta $, $ \beta>\frac{1}{k} $, we prove that the flow with the speed $ fu^\alpha\sigma_k^\beta $ exists for all time and converges smoothly after normalisation to a soliton which is a solution of $ fu^{\alpha-1}\sigma_k^{\beta} = c $ provided that $ f $ is a smooth positive function on $ S^n $ and satisfies that $ (\nabla_i\nabla_jf^{\frac{1}{1+k\beta-\alpha}}+\delta_{ij}f^{\frac{1}{1+k\beta-\alpha}}) $ is positive definite. When $ \beta = 1 $, our argument provides a proof to the well-known $ L_p $ Christoffel-Minkowski problem for the case $ p\ge k+1 $ where $ p = 2-\alpha $, which is identify with Ivaki's recent result. Especially, we obtain the same result for $ k = n $ without any constraint on smooth positive function $ f $. Finally, we also give a counterexample for the two anisotropic expanding flows when $ \alpha>1-k\beta $.
Citation: |
[1] |
R. Alessandroni and C. Sinestrari, Evolution of hypersurfaces by powers of the scalar curvature, Ann. Sc. Norm. Super. Pisa Cl. Sci., 9 (2010), 541-571.
![]() ![]() |
[2] |
B. Andrews, Entropy estimates for evolving hypersurfaces, Communications in Analysis and Geometry, 2 (1994), 267-275.
![]() |
[3] |
B. Andrews, Gauss curvature flow: The fate of the rolling stones, Invent. Math., 138 (1999), 151-161.
doi: 10.1007/s002220050344.![]() ![]() ![]() |
[4] |
B. Andrews, Contraction of convex hypersurfaces in Euclidean space, Calc. Var. Partial Differential Equations, 2 (1994), 151-171.
doi: 10.1007/BF01191340.![]() ![]() ![]() |
[5] |
B. Andrews, Monotone quantities and unique limits for evolving convex hypersurfaces, International Mathematics Research Notices, 20 (1997), 1001-1031.
doi: 10.1155/S1073792897000640.![]() ![]() ![]() |
[6] |
B. Andrews and J. McCoy, Convex hypersurfaces with pinched principal curvatures and flow of convex hypersurfaces by high powers of curvature, Trans. Amer. Math. Soc., 364 (2012), 3427-3447.
doi: 10.1090/S0002-9947-2012-05375-X.![]() ![]() ![]() |
[7] |
B. Andrews, J. McCoy and Y. Zheng, Contracting convex hypersurfaces by curvature, Calc. Var. Partial Differential Equations, 47 (2013), 611-665.
doi: 10.1007/s00526-012-0530-3.![]() ![]() ![]() |
[8] |
S. Brendle, K. Choi and P. Daskalopoulos, Asymptotic behavior of flows by powers of the Gaussian curvature, Acta Math., 219 (2017), 1-16.
doi: 10.4310/ACTA.2017.v219.n1.a1.![]() ![]() ![]() |
[9] |
K. Choi and P. Daskalopoulos, Uniqueness of closed self-similar solutions to the Gauss curvature flow, arXiv: 1609.05487.
![]() |
[10] |
K.-S. Chou and X.-J. Wang, A logarithmic Gauss curvature flow and the Minkowski problem, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 733-751.
doi: 10.1016/S0294-1449(00)00053-6.![]() ![]() ![]() |
[11] |
K.-S. Chou and X.-J. Wang, The $L_p$ Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. in Math., 205 (2006), 33-83.
doi: 10.1016/j.aim.2005.07.004.![]() ![]() ![]() |
[12] |
B. Chow, Deforming convex hypersurfaces by the $n$-th root of the Gaussian curvature, J. Differential Geom., 22 (1985), 117-138.
doi: 10.4310/jdg/1214439724.![]() ![]() ![]() |
[13] |
B. Chow, Deforming convex hypersurfaces by the square root of the scalar curvature, Invent. Math., 87 (1987), 63-82.
doi: 10.1007/BF01389153.![]() ![]() ![]() |
[14] |
B. Chow and D.-H. Tsai, Expansion of convex hypersurfaces by nonhomogeneous functions of curvature, Asian J. Math., 1 (1997), 769-784.
doi: 10.4310/AJM.1997.v1.n4.a7.![]() ![]() ![]() |
[15] |
W. J. Firey, Shapes of worn stones, Mathematika, 21 (1974), 1-11.
doi: 10.1112/S0025579300005714.![]() ![]() ![]() |
[16] |
C. Gerhardt, Non-scale-invariant inverse curvature flows in Euclidean space, Car. Var. Partial Differential Equations, 49 (2014), 471-489.
doi: 10.1007/s00526-012-0589-x.![]() ![]() ![]() |
[17] |
P. F. Guan and C. S. Lin, On Equation $\det(u_ij+u\delta_ij) = u^{p}f $ on $S^n$, Preprint No 2000-7, NCTS in Tsing-Hua University, 2000.
![]() |
[18] |
P. F. Guan and X.-N. Ma, Christoffel-Minkowski problem I: Convexity of solutions of a hessian equation, Invent. Math., 151 (2003), 553-577.
doi: 10.1007/s00222-002-0259-2.![]() ![]() ![]() |
[19] |
P. F. Guan and L. Ni, Entropy and a convergence theorem for Gauss curvature flow in high dimensions, J. Eur. Math. Soc., 19 (2017), 3735-3761.
doi: 10.4171/JEMS/752.![]() ![]() ![]() |
[20] |
P. F. Guan and C. Xia, $L^p$ Christoffel-Minkowski problem: The case $1 < p < k+1$, Cal. Var. Partial Differential Equations, 57 (2018), Art. 69, 23 pp.
doi: 10.1007/s00526-018-1341-y.![]() ![]() ![]() |
[21] |
C. Q. Hu, X.-N. Ma and C. L. Shen, On the Christoffel-Minkowski problem of Firey's $p$-sum, Cal. Var. Partial Differential Equations, 21 (2004), 137-155.
doi: 10.1007/s00526-003-0250-9.![]() ![]() ![]() |
[22] |
Y. Huang, E. Lutwak, D. Yang and G. Y. Zhang, Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems, Acta Math., 216 (2016), 325-388.
doi: 10.1007/s11511-016-0140-6.![]() ![]() ![]() |
[23] |
G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom., 20 (1984), 237-266.
doi: 10.4310/jdg/1214438998.![]() ![]() ![]() |
[24] |
M. N. Ivaki, Deforming a hypersurface by principal radii of curvature and support function, Calc. Var. Partial Differential Equations, 58 (2019), Art. 1, 18 pp.
doi: 10.1007/s00526-018-1462-3.![]() ![]() ![]() |
[25] |
N. V. Krylov, Nonlinear Elliptic and Parabolic Equations of the Second Order, Mathematics and its Applications (Soviet Series), 7. D. Reidel Publishing Co., Dordrecht, 1987.
doi: 10.1007/978-94-010-9557-0.![]() ![]() ![]() |
[26] |
Q.-R. Li, W. M. Sheng and X.-J. Wang, Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems, J. Eur. Math. Soc., (2019).
doi: 10.4171/JEMS/936.![]() ![]() |
[27] |
Q.-R. Li, W. M.Sheng and X.-J. Wang, Asymptotic convergence for a class of fully nonlinear curvature flows, J. Geom. Anal., 3 (2019), 1-27.
![]() |
[28] |
R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1993.
doi: 10.1017/CBO9780511526282.![]() ![]() ![]() |
[29] |
J. I. E. Urbas, An expansion of convex hypersurfaces, J. Differential Geom., 33 (1991), 91-125.
doi: 10.4310/jdg/1214446031.![]() ![]() ![]() |
[30] |
X.-J. Wang, Existence of convex hypersurfaces with prescribed Gauss-Kronecker curvature, Trans. Amer. Math. Soc., 348 (1996), 4501-4524.
doi: 10.1090/S0002-9947-96-01650-9.![]() ![]() ![]() |
[31] |
C. Xia, Inverse anisotropic curvature flow from convex hypersurfaces, J. Geom. Anal., 27 (2017), 2131-2154.
doi: 10.1007/s12220-016-9755-2.![]() ![]() ![]() |