April  2020, 40(4): 2037-2060. doi: 10.3934/dcds.2020105

Emergent dynamics of an orientation flocking model for multi-agent system

1. 

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 08826, Republic of Korea

2. 

Korea Institute for Advanced Study, Hoegiro 85, Seoul, 02455, Republic of Korea

3. 

National Institute for Mathematical Sciences, 70, Yuseong-daero 1689 beon-gil, Yuseong-gu, Daejeon 34047, Republic of Korea

4. 

The Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Republic of Korea

5. 

Department of Mathematics, Myongji University, 116 Myongjiro, Yong-In 17058, Republic of Korea

* Corresponding author: Se Eun Noh

Received  October 2018 Revised  September 2019 Published  January 2020

Fund Project: The work of S.-Y. Ha was supported by the National Research Foundation of Korea (NRF-2017R1A5A1015626), the work of D. Kim was supported from the National Institute for Mathematical Sciences (NIMS) grant funded by the Korea government (MIST) (No.B19610000), and the work of S. E. Noh was supported by the National Research Foundation of Korea (NRF-2017R1C1B5018312).

We study the orientation flocking for the deterministic counterpart of a stochastic agent-based model introduced by Degond, Frouvelle and Merino-Aceituno in 2017, where the orientation is defined as a $ {\rm SO}(3) $ matrix. Their proposed model can be reduced to the other collective dynamics models such as the Lohe matrix model and the Viscek-type model as special cases. In this work, we study the emergent dynamics of the orientation flocking model in two frameworks. First, we present sufficient conditions leading to the orientation flocking when the natural frequency matrices are identical. To be precise, we prove that all orientation matrices asymptotically converge to the common one, and the spatial position diameter remains uniformly bounded. Second, we show the emergence of orientation-locked states for non-identical natural frequency matrices, that is, the difference of any two orientation matrices tends to the definite constant matrix. On the other hand, we establish the finite-in-time stability with respect to initial data of the proposed orientation flocking model. We also present the numerical results consistent with our rigorous analysis. Our work remains valid even for dimensions greater than three.

Citation: Seung-Yeal Ha, Dohyun Kim, Jaeseung Lee, Se Eun Noh. Emergent dynamics of an orientation flocking model for multi-agent system. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2037-2060. doi: 10.3934/dcds.2020105
References:
[1]

J. A. AcebrónL. L. BonillaC. J. Pérez VicenteF. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185.  doi: 10.1103/RevModPhys.77.137.

[2]

D. BenedettoE. Caglioti and U. Montemagno, On the complete phase synchronization for the Kuramoto model in the mean-field limit, Commun. Math. Sci., 13 (2015), 1775-1786.  doi: 10.4310/CMS.2015.v13.n7.a6.

[3]

D. BenedettoE. Caglioti and U. Montemagno, Exponential dephasing of oscillators in the kinetic Kuramoto model, J. Stat. Phys., 162 (2016), 813-823.  doi: 10.1007/s10955-015-1426-3.

[4]

J. C. Bronski, L. DeVille and M. J. Park, Fully synchronous solutions and the synchronization phase transition for the finite-$N$ Kuramoto model, Chaos, 22 (2012), 033133, 17 pp. doi: 10.1063/1.4745197.

[5]

S. Chandra, M. Girvan and E. Ott, Complexity reduction ansatz for systems of interacting orientable agents: Beyond the Kuramoto model, Chaos, 29 (2019), 053107, 8 pp. doi: 10.1063/1.5093038.

[6]

S.-H. Choi and S.-Y. Ha, Complete entrainment of Lohe oscillators under attractive and repulsive couplings, SIAM J. Appl. Dyn. Syst., 13 (2014), 1417-1441.  doi: 10.1137/140961699.

[7]

S.-H. Choi and S.-Y. Ha, Emergence of flocking for a multi-agent system moving with constant speed, Commun. Math. Sci., 14 (2016), 953-972.  doi: 10.4310/CMS.2016.v14.n4.a4.

[8]

Y.-P. ChoiS.-Y. HaS. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Phys. D, 241 (2012), 735-754.  doi: 10.1016/j.physd.2011.11.011.

[9]

N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automat. Control, 54 (2009), 353-357.  doi: 10.1109/TAC.2008.2007884.

[10]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.

[11]

P. DegondA. Frouvelle and S. Merino-Aceituno, A new flocking model through body attitude coordination, Math. Models Methods Appl. Sci., 27 (2017), 1005-1049.  doi: 10.1142/S0218202517400085.

[12]

P. DegondA. FrouvelleS. Merino-Aceituno and A. Trescases, Quaternions in collective dynamics, Multiscale Model. Simul., 16 (2018), 28-77.  doi: 10.1137/17M1135207.

[13]

L. DeVille, Synchronization and stability for quantum kuramoto, J. Stat. Phys., 174 (2019), 160-187.  doi: 10.1007/s10955-018-2168-9.

[14]

J.-G. Dong and X. P. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480.  doi: 10.4310/CMS.2013.v11.n2.a7.

[15]

F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica J. IFAC, 50 (2014), 1539-1564.  doi: 10.1016/j.automatica.2014.04.012.

[16]

F. Dörfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM. J. Appl. Dyn. Syst., 10 (2011), 1070-1099.  doi: 10.1137/10081530X.

[17]

S.-Y. Ha and J.-G. Liu, A simple proof of Cucker-Smale flocking dynamics and mean field limit, Commun. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.

[18]

S.-Y. HaT. Ha and J.-H. Kim, On the complete synchronization for the globally coupled Kuramoto model, Phys. D, 239 (2010), 1692-1700.  doi: 10.1016/j.physd.2010.05.003.

[19]

S.-Y. HaM.-J. Kang and E. Jeong, Emergent behaviour of a generalized Viscek-type flocking model, Nonlinearity, 23 (2010), 3139-3156.  doi: 10.1088/0951-7715/23/12/008.

[20]

S.-Y. HaD. KimJ. Lee and S. E. Noh, Particle and kinetic models for swarming particles on a sphere and stability properties, J. Stat. Phys., 174 (2019), 622-655.  doi: 10.1007/s10955-018-2169-8.

[21]

S.-Y. HaH. K. Kim and J. Park, Remarks on the complete synchronization of Kuramoto oscillators, Nonlinearity, 28 (2015), 1441-1462.  doi: 10.1088/0951-7715/28/5/1441.

[22]

S.-Y. HaD. KoJ. Park and X. T. Zhang, Collective synchronization of classical and quantum oscillators, EMS Surv. Math. Sci., 3 (2016), 209-267.  doi: 10.4171/EMSS/17.

[23]

S.-Y. HaH. K. Kim and S. W. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling strength, Discrete Contin. Dyn. Syst., 35 (2015), 3417-3436. 

[24]

S.-Y. HaD. Ko and S. W. Ryoo, Emergent dynamics of a generalized Lohe model on some class of Lie groups, J. Stat. Phys., 168 (2017), 171-207.  doi: 10.1007/s10955-017-1797-8.

[25]

S.-Y. HaD. Ko and S. W. Ryoo, On the relaxation dynamics of Lohe oscillators on some Riemannian manifolds, J. Stat. Phys., 172 (2018), 1427-1478.  doi: 10.1007/s10955-018-2091-0.

[26]

S.-Y. HaD. Ko and Y. L. Zhang, Remarks on the critical coupling strength for the Cucker-Smale model with unit speed, Discrete Contin. Dyn. Syst., 38 (2018), 2763-2793.  doi: 10.3934/dcds.2018116.

[27]

S.-Y. HaJ. Kim and X. T. Zhang, Uniform stability of the Cucker-Smale model and its application to the mean-field limit, Kinet. Relat. Mod., 11 (2018), 1157-1181.  doi: 10.3934/krm.2018045.

[28]

S.-Y. HaZ. C. Li and X. P. Xue, Formation of phase-locked states in a population of locally interacting Kuramoto oscillators, J. Differential Equations, 255 (2013), 3053-3070.  doi: 10.1016/j.jde.2013.07.013.

[29]

S.-Y. Ha and S. W. Ryoo, On the emergence and orbital stability of phase-locked states for the Lohe model, J. Stat. Phys., 163 (2016), 411-439.  doi: 10.1007/s10955-016-1481-4.

[30]

Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer Series in Synergetics, 19. Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69689-3.

[31]

Y. Kuramoto, Self-entrainment of population of coupled non-linear oscillators, International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Phys., Springer, Berlin, 39 (1975), 420-422. 

[32]

M. A. Lohe, Non-Abelian Kuramoto model and synchronization, J. Phys. A: Math. Theor., 42 (2009), 395101, 25 pp. doi: 10.1088/1751-8113/42/39/395101.

[33]

R. Olfati-Saber, Swarms on sphere: A programmable swarm with synchronous behaviors like oscillator networks, Proc. of the 45th IEEE conference on Decision and Control, (2006), 5060–5066. doi: 10.1109/CDC.2006.376811.

[34] A. PikovskyM. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Science Series, 12. Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511755743.
[35]

A. SarletteR. Sepulchre and N. E. Leonard, Autonomous rigid body attitude synchronization, Automatica, 45 (2009), 572-577. 

[36]

S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D., 143 (2000), 1-20.  doi: 10.1016/S0167-2789(00)00094-4.

[37]

R. Tron, B. Afsari and R. Vidal, Intrinsic consensus on SO(3) with almost-global convergence, 2012 IEEE Conference on Decision and Control, (2012), 2052–2058. doi: 10.1109/CDC.2012.6426677.

[38]

T. VicsekA. CzirókE. Ben-JacobI. CohenI and O. Shochet, Novel type of phase transition in a system of self-drivenparticles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.

show all references

References:
[1]

J. A. AcebrónL. L. BonillaC. J. Pérez VicenteF. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185.  doi: 10.1103/RevModPhys.77.137.

[2]

D. BenedettoE. Caglioti and U. Montemagno, On the complete phase synchronization for the Kuramoto model in the mean-field limit, Commun. Math. Sci., 13 (2015), 1775-1786.  doi: 10.4310/CMS.2015.v13.n7.a6.

[3]

D. BenedettoE. Caglioti and U. Montemagno, Exponential dephasing of oscillators in the kinetic Kuramoto model, J. Stat. Phys., 162 (2016), 813-823.  doi: 10.1007/s10955-015-1426-3.

[4]

J. C. Bronski, L. DeVille and M. J. Park, Fully synchronous solutions and the synchronization phase transition for the finite-$N$ Kuramoto model, Chaos, 22 (2012), 033133, 17 pp. doi: 10.1063/1.4745197.

[5]

S. Chandra, M. Girvan and E. Ott, Complexity reduction ansatz for systems of interacting orientable agents: Beyond the Kuramoto model, Chaos, 29 (2019), 053107, 8 pp. doi: 10.1063/1.5093038.

[6]

S.-H. Choi and S.-Y. Ha, Complete entrainment of Lohe oscillators under attractive and repulsive couplings, SIAM J. Appl. Dyn. Syst., 13 (2014), 1417-1441.  doi: 10.1137/140961699.

[7]

S.-H. Choi and S.-Y. Ha, Emergence of flocking for a multi-agent system moving with constant speed, Commun. Math. Sci., 14 (2016), 953-972.  doi: 10.4310/CMS.2016.v14.n4.a4.

[8]

Y.-P. ChoiS.-Y. HaS. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Phys. D, 241 (2012), 735-754.  doi: 10.1016/j.physd.2011.11.011.

[9]

N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automat. Control, 54 (2009), 353-357.  doi: 10.1109/TAC.2008.2007884.

[10]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.

[11]

P. DegondA. Frouvelle and S. Merino-Aceituno, A new flocking model through body attitude coordination, Math. Models Methods Appl. Sci., 27 (2017), 1005-1049.  doi: 10.1142/S0218202517400085.

[12]

P. DegondA. FrouvelleS. Merino-Aceituno and A. Trescases, Quaternions in collective dynamics, Multiscale Model. Simul., 16 (2018), 28-77.  doi: 10.1137/17M1135207.

[13]

L. DeVille, Synchronization and stability for quantum kuramoto, J. Stat. Phys., 174 (2019), 160-187.  doi: 10.1007/s10955-018-2168-9.

[14]

J.-G. Dong and X. P. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480.  doi: 10.4310/CMS.2013.v11.n2.a7.

[15]

F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica J. IFAC, 50 (2014), 1539-1564.  doi: 10.1016/j.automatica.2014.04.012.

[16]

F. Dörfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM. J. Appl. Dyn. Syst., 10 (2011), 1070-1099.  doi: 10.1137/10081530X.

[17]

S.-Y. Ha and J.-G. Liu, A simple proof of Cucker-Smale flocking dynamics and mean field limit, Commun. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.

[18]

S.-Y. HaT. Ha and J.-H. Kim, On the complete synchronization for the globally coupled Kuramoto model, Phys. D, 239 (2010), 1692-1700.  doi: 10.1016/j.physd.2010.05.003.

[19]

S.-Y. HaM.-J. Kang and E. Jeong, Emergent behaviour of a generalized Viscek-type flocking model, Nonlinearity, 23 (2010), 3139-3156.  doi: 10.1088/0951-7715/23/12/008.

[20]

S.-Y. HaD. KimJ. Lee and S. E. Noh, Particle and kinetic models for swarming particles on a sphere and stability properties, J. Stat. Phys., 174 (2019), 622-655.  doi: 10.1007/s10955-018-2169-8.

[21]

S.-Y. HaH. K. Kim and J. Park, Remarks on the complete synchronization of Kuramoto oscillators, Nonlinearity, 28 (2015), 1441-1462.  doi: 10.1088/0951-7715/28/5/1441.

[22]

S.-Y. HaD. KoJ. Park and X. T. Zhang, Collective synchronization of classical and quantum oscillators, EMS Surv. Math. Sci., 3 (2016), 209-267.  doi: 10.4171/EMSS/17.

[23]

S.-Y. HaH. K. Kim and S. W. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling strength, Discrete Contin. Dyn. Syst., 35 (2015), 3417-3436. 

[24]

S.-Y. HaD. Ko and S. W. Ryoo, Emergent dynamics of a generalized Lohe model on some class of Lie groups, J. Stat. Phys., 168 (2017), 171-207.  doi: 10.1007/s10955-017-1797-8.

[25]

S.-Y. HaD. Ko and S. W. Ryoo, On the relaxation dynamics of Lohe oscillators on some Riemannian manifolds, J. Stat. Phys., 172 (2018), 1427-1478.  doi: 10.1007/s10955-018-2091-0.

[26]

S.-Y. HaD. Ko and Y. L. Zhang, Remarks on the critical coupling strength for the Cucker-Smale model with unit speed, Discrete Contin. Dyn. Syst., 38 (2018), 2763-2793.  doi: 10.3934/dcds.2018116.

[27]

S.-Y. HaJ. Kim and X. T. Zhang, Uniform stability of the Cucker-Smale model and its application to the mean-field limit, Kinet. Relat. Mod., 11 (2018), 1157-1181.  doi: 10.3934/krm.2018045.

[28]

S.-Y. HaZ. C. Li and X. P. Xue, Formation of phase-locked states in a population of locally interacting Kuramoto oscillators, J. Differential Equations, 255 (2013), 3053-3070.  doi: 10.1016/j.jde.2013.07.013.

[29]

S.-Y. Ha and S. W. Ryoo, On the emergence and orbital stability of phase-locked states for the Lohe model, J. Stat. Phys., 163 (2016), 411-439.  doi: 10.1007/s10955-016-1481-4.

[30]

Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer Series in Synergetics, 19. Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69689-3.

[31]

Y. Kuramoto, Self-entrainment of population of coupled non-linear oscillators, International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Phys., Springer, Berlin, 39 (1975), 420-422. 

[32]

M. A. Lohe, Non-Abelian Kuramoto model and synchronization, J. Phys. A: Math. Theor., 42 (2009), 395101, 25 pp. doi: 10.1088/1751-8113/42/39/395101.

[33]

R. Olfati-Saber, Swarms on sphere: A programmable swarm with synchronous behaviors like oscillator networks, Proc. of the 45th IEEE conference on Decision and Control, (2006), 5060–5066. doi: 10.1109/CDC.2006.376811.

[34] A. PikovskyM. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Science Series, 12. Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511755743.
[35]

A. SarletteR. Sepulchre and N. E. Leonard, Autonomous rigid body attitude synchronization, Automatica, 45 (2009), 572-577. 

[36]

S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D., 143 (2000), 1-20.  doi: 10.1016/S0167-2789(00)00094-4.

[37]

R. Tron, B. Afsari and R. Vidal, Intrinsic consensus on SO(3) with almost-global convergence, 2012 IEEE Conference on Decision and Control, (2012), 2052–2058. doi: 10.1109/CDC.2012.6426677.

[38]

T. VicsekA. CzirókE. Ben-JacobI. CohenI and O. Shochet, Novel type of phase transition in a system of self-drivenparticles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.

Figure 1.  Identical case: $ H_i \equiv H $
Figure 2.  Non-identical case
[1]

Seung-Yeal Ha, Jinwook Jung, Peter Kuchling. Emergence of anomalous flocking in the fractional Cucker-Smale model. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5465-5489. doi: 10.3934/dcds.2019223

[2]

Nadia Loy, Luigi Preziosi. Stability of a non-local kinetic model for cell migration with density dependent orientation bias. Kinetic and Related Models, 2020, 13 (5) : 1007-1027. doi: 10.3934/krm.2020035

[3]

Zhilin Kang, Xingyi Li, Zhongfei Li. Mean-CVaR portfolio selection model with ambiguity in distribution and attitude. Journal of Industrial and Management Optimization, 2020, 16 (6) : 3065-3081. doi: 10.3934/jimo.2019094

[4]

Hyungjin Huh. Remarks on the Schrödinger-Lohe model. Networks and Heterogeneous Media, 2019, 14 (4) : 759-769. doi: 10.3934/nhm.2019030

[5]

Seung-Yeal Ha, Hansol Park. Emergent behaviors of the generalized Lohe matrix model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4227-4261. doi: 10.3934/dcdsb.2020286

[6]

Seung-Yeal Ha, Myeongju Kang, Hansol Park. Collective behaviors of the Lohe Hermitian sphere model with inertia. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2613-2641. doi: 10.3934/cpaa.2021046

[7]

Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks and Heterogeneous Media, 2021, 16 (1) : 91-138. doi: 10.3934/nhm.2021001

[8]

Xiongtao Zhang, Tingting Zhu. Emergence of synchronization in Kuramoto model with general digraph. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022172

[9]

Lining Ru, Xiaoping Xue. Flocking of Cucker-Smale model with intrinsic dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6817-6835. doi: 10.3934/dcdsb.2019168

[10]

Paolo Antonelli, Seung-Yeal Ha, Dohyun Kim, Pierangelo Marcati. The Wigner-Lohe model for quantum synchronization and its emergent dynamics. Networks and Heterogeneous Media, 2017, 12 (3) : 403-416. doi: 10.3934/nhm.2017018

[11]

Seung-Yeal Ha, Gyuyoung Hwang, Dohyun Kim. On the complete aggregation of the Wigner-Lohe model for identical potentials. Networks and Heterogeneous Media, 2022, 17 (5) : 665-686. doi: 10.3934/nhm.2022022

[12]

Junhyeok Byeon, Seung-Yeal Ha, Hansol Park. Asymptotic interplay of states and adaptive coupling gains in the Lohe Hermitian sphere model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (11) : 6501-6538. doi: 10.3934/dcdsb.2022007

[13]

Julie Joie, Yifeng Lei, Marie-Christine Durrieu, Thierry Colin, Clair Poignard, Olivier Saut. Migration and orientation of endothelial cells on micropatterned polymers: A simple model based on classical mechanics. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1059-1076. doi: 10.3934/dcdsb.2015.20.1059

[14]

Seung-Yeal Ha, Jinyeong Park, Sang Woo Ryoo. Emergence of phase-locked states for the Winfree model in a large coupling regime. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3417-3436. doi: 10.3934/dcds.2015.35.3417

[15]

Seung-Yeal Ha, Dohyun Kim, Jaeseung Lee, Se Eun Noh. Emergence of aggregation in the swarm sphere model with adaptive coupling laws. Kinetic and Related Models, 2019, 12 (2) : 411-444. doi: 10.3934/krm.2019018

[16]

Floriane Lignet, Vincent Calvez, Emmanuel Grenier, Benjamin Ribba. A structural model of the VEGF signalling pathway: Emergence of robustness and redundancy properties. Mathematical Biosciences & Engineering, 2013, 10 (1) : 167-184. doi: 10.3934/mbe.2013.10.167

[17]

Tingting Zhu. Emergence of synchronization in Kuramoto model with frustration under general network topology. Networks and Heterogeneous Media, 2022, 17 (2) : 255-291. doi: 10.3934/nhm.2022005

[18]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic and Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[19]

Chun-Hsien Li, Suh-Yuh Yang. A new discrete Cucker-Smale flocking model under hierarchical leadership. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2587-2599. doi: 10.3934/dcdsb.2016062

[20]

Ryoji Sawa. Stochastic stability in the large population and small mutation limits for coordination games. Journal of Dynamics and Games, 2021  doi: 10.3934/jdg.2021015

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (373)
  • HTML views (105)
  • Cited by (0)

Other articles
by authors

[Back to Top]