-
Previous Article
On global smooth solutions of 3-D compressible Euler equations with vanishing density in infinitely expanding balls
- DCDS Home
- This Issue
-
Next Article
Multiple positive solutions of saturable nonlinear Schrödinger equations with intensity functions
Semilinear elliptic system with boundary singularity
School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China |
In this paper, we investigate the asymptotic behavior of local solutions for the semilinear elliptic system $ -\Delta \mathbf{u} = |\mathbf{u}|^{p-1}\mathbf{u} $ with boundary isolated singularity, where $ 1<p<\frac{n+2}{n-2} $, $ n\geq 2 $ and $ \mathbf{u} $ is a $ C^2 $ nonnegative vector-valued function defined on the half space. This work generalizes the correspondence results of Bidaut-Véron-Ponce-Véron on the scalar case, and Ghergu-Kim-Shahgholian on the internal singularity case.
References:
[1] |
M. J. Ablowitz, B. Prinari and A. D. Trubatch, Discrete and Continuous Nonlinear
Schrödinger Systems, London Mathematical Society Lecture Note Series, 302. Cambridge
University Press, Cambridge, 2004. |
[2] |
S. Agmon, A. Douglis and L. Nirenberg,
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅰ, Commun. PureAppl. Math., 12 (1959), 623-727.
doi: 10.1002/cpa.3160120405. |
[3] |
P. Aviles,
Local behavior of solutions of some elliptic equations, Comm. Math. Phys., 108 (1987), 177-192.
doi: 10.1007/BF01210610. |
[4] |
M. F. Bidaut-Véron, A. C. Ponce and L. Véron,
Isolated boundary singularities of semilinear elliptic equations, Calc. Var. Partial Differential Equations, 40 (2011), 183-221.
doi: 10.1007/s00526-010-0337-z. |
[5] |
M. F. Bidaut-Véron, A. C. Ponce and L. Véron,
Boundary singularities of positive solutions of some nonlinear elliptic equations, C. R. Math. Acad. Sci. Paris, 344 (2007), 83-88.
doi: 10.1016/j.crma.2006.11.027. |
[6] |
M. F. Bidaut-Véron and L. Vivier,
An elliptic semilinear equation with source term involving boundary measures: The subcritical case, Rev. Mat. Iberoam., 16 (2000), 477-513.
doi: 10.4171/RMI/281. |
[7] |
H. Brézis and R. E. L. Turner,
On a class of superlinear elliptic problems, Comm. Partial Differential Equations, 2 (1977), 601-614.
doi: 10.1080/03605307708820041. |
[8] |
L. A. Caffarelli, B. Gidas and J. Spruck,
Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304. |
[9] |
R. Caju, J. M. do Ó and A. Silva Santos,
Qualitative properties of positive singular solutions to nonlinear elliptic systems with critical exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36 (2019), 1575-1601.
doi: 10.1016/j.anihpc.2019.02.001. |
[10] |
Z. J. Chen, C.-S. Lin and W. M. Zou,
Monotonicity and nonexistence results to cooperative systems in the half space, J. Funct. Anal., 266 (2014), 1088-1105.
doi: 10.1016/j.jfa.2013.08.021. |
[11] |
E. N. Dancer,
Some notes on the method of moving planes, Bull. Aust. Math. Soc., 46 (1992), 425-434.
doi: 10.1017/S0004972700012089. |
[12] |
M. del Pino, M. Musso and F. Pacard,
Boundary singularities for weak solutions of semilinear elliptic problems, J. Funct. Anal., 253 (2007), 241-272.
doi: 10.1016/j.jfa.2007.05.023. |
[13] |
O. Druet, E. Hebey and J. Vétois,
Bounded stability for strongly coupled critical elliptic systems below the geometric threshold of the conformal Laplacian, J. Funct. Anal., 258 (2010), 999-1059.
doi: 10.1016/j.jfa.2009.07.004. |
[14] |
M. Ghergu, S. Kim and H. Shahgholian, Isolated Singularities for Semilinear Elliptic Systems with Power-Law Nonlinearity, arXiv: 1804.04291. Google Scholar |
[15] |
B. Gidas, W. M. Ni and L. Nirenberg,
Symmetry of related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.
doi: 10.1007/BF01221125. |
[16] |
B. Gidas and J. Spruck,
Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.
doi: 10.1002/cpa.3160340406. |
[17] |
A. Gmira and L. Véron,
Boundary singularities of solutions of some nonlinear elliptic equations, Duke Math. J., 60 (1991), 271-324.
doi: 10.1215/S0012-7094-91-06414-8. |
[18] |
Y. X. Guo,
Non-existence, monotonicity for positive solutions of semilinear elliptic system in $ \mathbb{R}^n_+$, Commun. Contemp. Math., 12 (2010), 351-372.
doi: 10.1142/S0219199710003853. |
[19] |
Z. C. Han, Y. Y. Li and E. V. Teixeira,
Asymptotic behavior of solutions to the $\sigma_k$-Yamabe equation near isolated singularities, Invent. Math., 182 (2010), 635-684.
doi: 10.1007/s00222-010-0274-7. |
[20] |
N. Korevaar, R. Mazzeo, F. Pacard and R. Schoen,
Refined asymptotics for constant scalar curvature metrics with isolated singularities, Invent. Math., 135 (1999), 233-272.
doi: 10.1007/s002220050285. |
[21] |
Y. Y. Li,
Conformally invariant fully nonlinear elliptic equations and isolated singularities, J. Funct. Anal., 233 (2006), 380-425.
doi: 10.1016/j.jfa.2005.08.009. |
[22] |
P.-L. Lions,
Isolated singularities in semilinear problems, J. Differential Equations, 38 (1980), 441-450.
doi: 10.1016/0022-0396(80)90018-2. |
[23] |
P. Poláčik, P. Quittner and P. Souplet,
Singularity and decay estimates in superlinear problems via Liouville-type theorems. Ⅰ. Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8. |
[24] |
A. Porretta and L. Véron,
Separable solutions of quasilinear Lane-Emden equations, J. Eur. Math. Soc., 15 (2011), 755-774.
doi: 10.4171/JEMS/375. |
[25] |
J. G. Xiong,
The critical semilinear elliptic equation with boundary isolated singularities, J. Differential Equations, 263 (2017), 1907-1930.
doi: 10.1016/j.jde.2017.03.034. |
show all references
References:
[1] |
M. J. Ablowitz, B. Prinari and A. D. Trubatch, Discrete and Continuous Nonlinear
Schrödinger Systems, London Mathematical Society Lecture Note Series, 302. Cambridge
University Press, Cambridge, 2004. |
[2] |
S. Agmon, A. Douglis and L. Nirenberg,
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅰ, Commun. PureAppl. Math., 12 (1959), 623-727.
doi: 10.1002/cpa.3160120405. |
[3] |
P. Aviles,
Local behavior of solutions of some elliptic equations, Comm. Math. Phys., 108 (1987), 177-192.
doi: 10.1007/BF01210610. |
[4] |
M. F. Bidaut-Véron, A. C. Ponce and L. Véron,
Isolated boundary singularities of semilinear elliptic equations, Calc. Var. Partial Differential Equations, 40 (2011), 183-221.
doi: 10.1007/s00526-010-0337-z. |
[5] |
M. F. Bidaut-Véron, A. C. Ponce and L. Véron,
Boundary singularities of positive solutions of some nonlinear elliptic equations, C. R. Math. Acad. Sci. Paris, 344 (2007), 83-88.
doi: 10.1016/j.crma.2006.11.027. |
[6] |
M. F. Bidaut-Véron and L. Vivier,
An elliptic semilinear equation with source term involving boundary measures: The subcritical case, Rev. Mat. Iberoam., 16 (2000), 477-513.
doi: 10.4171/RMI/281. |
[7] |
H. Brézis and R. E. L. Turner,
On a class of superlinear elliptic problems, Comm. Partial Differential Equations, 2 (1977), 601-614.
doi: 10.1080/03605307708820041. |
[8] |
L. A. Caffarelli, B. Gidas and J. Spruck,
Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304. |
[9] |
R. Caju, J. M. do Ó and A. Silva Santos,
Qualitative properties of positive singular solutions to nonlinear elliptic systems with critical exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36 (2019), 1575-1601.
doi: 10.1016/j.anihpc.2019.02.001. |
[10] |
Z. J. Chen, C.-S. Lin and W. M. Zou,
Monotonicity and nonexistence results to cooperative systems in the half space, J. Funct. Anal., 266 (2014), 1088-1105.
doi: 10.1016/j.jfa.2013.08.021. |
[11] |
E. N. Dancer,
Some notes on the method of moving planes, Bull. Aust. Math. Soc., 46 (1992), 425-434.
doi: 10.1017/S0004972700012089. |
[12] |
M. del Pino, M. Musso and F. Pacard,
Boundary singularities for weak solutions of semilinear elliptic problems, J. Funct. Anal., 253 (2007), 241-272.
doi: 10.1016/j.jfa.2007.05.023. |
[13] |
O. Druet, E. Hebey and J. Vétois,
Bounded stability for strongly coupled critical elliptic systems below the geometric threshold of the conformal Laplacian, J. Funct. Anal., 258 (2010), 999-1059.
doi: 10.1016/j.jfa.2009.07.004. |
[14] |
M. Ghergu, S. Kim and H. Shahgholian, Isolated Singularities for Semilinear Elliptic Systems with Power-Law Nonlinearity, arXiv: 1804.04291. Google Scholar |
[15] |
B. Gidas, W. M. Ni and L. Nirenberg,
Symmetry of related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.
doi: 10.1007/BF01221125. |
[16] |
B. Gidas and J. Spruck,
Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.
doi: 10.1002/cpa.3160340406. |
[17] |
A. Gmira and L. Véron,
Boundary singularities of solutions of some nonlinear elliptic equations, Duke Math. J., 60 (1991), 271-324.
doi: 10.1215/S0012-7094-91-06414-8. |
[18] |
Y. X. Guo,
Non-existence, monotonicity for positive solutions of semilinear elliptic system in $ \mathbb{R}^n_+$, Commun. Contemp. Math., 12 (2010), 351-372.
doi: 10.1142/S0219199710003853. |
[19] |
Z. C. Han, Y. Y. Li and E. V. Teixeira,
Asymptotic behavior of solutions to the $\sigma_k$-Yamabe equation near isolated singularities, Invent. Math., 182 (2010), 635-684.
doi: 10.1007/s00222-010-0274-7. |
[20] |
N. Korevaar, R. Mazzeo, F. Pacard and R. Schoen,
Refined asymptotics for constant scalar curvature metrics with isolated singularities, Invent. Math., 135 (1999), 233-272.
doi: 10.1007/s002220050285. |
[21] |
Y. Y. Li,
Conformally invariant fully nonlinear elliptic equations and isolated singularities, J. Funct. Anal., 233 (2006), 380-425.
doi: 10.1016/j.jfa.2005.08.009. |
[22] |
P.-L. Lions,
Isolated singularities in semilinear problems, J. Differential Equations, 38 (1980), 441-450.
doi: 10.1016/0022-0396(80)90018-2. |
[23] |
P. Poláčik, P. Quittner and P. Souplet,
Singularity and decay estimates in superlinear problems via Liouville-type theorems. Ⅰ. Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8. |
[24] |
A. Porretta and L. Véron,
Separable solutions of quasilinear Lane-Emden equations, J. Eur. Math. Soc., 15 (2011), 755-774.
doi: 10.4171/JEMS/375. |
[25] |
J. G. Xiong,
The critical semilinear elliptic equation with boundary isolated singularities, J. Differential Equations, 263 (2017), 1907-1930.
doi: 10.1016/j.jde.2017.03.034. |
[1] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[2] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[3] |
John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021004 |
[4] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[5] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[6] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[7] |
Sohana Jahan. Discriminant analysis of regularized multidimensional scaling. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 255-267. doi: 10.3934/naco.2020024 |
[8] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
[9] |
Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021004 |
[10] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[11] |
Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511 |
[12] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[13] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[14] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[15] |
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185 |
[16] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[17] |
Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446 |
[18] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[19] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[20] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]