In this paper, we introduce the concepts of rescaled expansiveness and the rescaled shadowing property for flows on metric spaces which are dynamical properties, and present a spectral decomposition theorem for flows. More precisely, we prove that if a flow is rescaling expansive and has the rescaled shadowing property on a locally compact metric space, then it admits the spectral decomposition. Moreover, we show that if a flow on locally compact metric space has the rescaled shadowing property then its restriction on nonwandering set also has the rescaled shadowing property.
Citation: |
[1] |
N. Aoki, On the homeomorphisms with pseudo-orbit tracing property, Tokyo J. Math., 6 (1983), 329-334.
doi: 10.3836/tjm/1270213874.![]() ![]() ![]() |
[2] |
V. Araujo, M. J. Pacifico, E. R. Pujals and M. Viana, Singular-hyperbolic attractors are chaotic, Trans. Amer. Math. Soc., 361 (2009), 2431-2485.
doi: 10.1090/S0002-9947-08-04595-9.![]() ![]() ![]() |
[3] |
A. Artigue, Rescaled expansivity and separating flows, Discrete Contin. Dyn. Syst., 38 (2018), 4433-4447.
doi: 10.3934/dcds.2018193.![]() ![]() ![]() |
[4] |
R. Bowen and P. Walters, Expansive one-parameter flows, J. Differential Equations, 12 (1972), 180-193.
doi: 10.1016/0022-0396(72)90013-7.![]() ![]() ![]() |
[5] |
W. Cordeiro, M. Denker and X. Zhang, On specification and measure expansiveness, Discrete Contin. Dyn. Syst., 37 (2017), 1941-1957.
doi: 10.3934/dcds.2017082.![]() ![]() ![]() |
[6] |
T. Das, K. Lee, D. Richeson and J. Wiseman, Spectral decomposition for topologically Anosov homemorphisms on noncompact and non-metrizable spaces, Topology Appl., 160 (2013), 149-158.
doi: 10.1016/j.topol.2012.10.010.![]() ![]() ![]() |
[7] |
M. Hurley, Chain recurrence, semiflows, and gradients, J. Dynam. Differential Equations, 7 (1995), 437-456.
doi: 10.1007/BF02219371.![]() ![]() ![]() |
[8] |
M. Komuro, Expansive properties of Lorenz attractors, The Theory of Dynamical Systems and Its Applications to Nonlinear Problems, WWorld Sci. Publishing, Singapore, (1984), 4–26.
![]() ![]() |
[9] |
M. Komuro, One-parameter flows with the pseudo orbit tracing property, Monatsh. Math., 98 (1984), 219-253.
doi: 10.1007/BF01507750.![]() ![]() ![]() |
[10] |
K.-H. Lee, Weak attractor in flows on noncompact spaces, Dyn. Syst. Appl., 5 (1996), 503-519.
![]() ![]() |
[11] |
K. Lee, N.-T. Nguyen and Y. N. Yang, Topological stability and spectral decomposition for homeomophisms on noncompact spaces, Discrete Contin. Dyn. Syst., 38 (2018), 2487-2503.
doi: 10.3934/dcds.2018103.![]() ![]() ![]() |
[12] |
Z. Nitecki, Explosions in completely unstable flows. Ⅰ. Preventing explosions, Trans. Amer. Math. Soc., 245 (1978), 43-61.
doi: 10.2307/1998856.![]() ![]() ![]() |
[13] |
S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.
doi: 10.1090/S0002-9904-1967-11798-1.![]() ![]() ![]() |
[14] |
X. Wen and L. Wen, A rescaled expansiveness of flows, Trans. Amer. Math. Soc., 371 (2019), 3179-3207.
doi: 10.1090/tran/7382.![]() ![]() ![]() |
[15] |
X. Wen and Y. N. Yu, Equivalent definitions of rescaled expansiveness, J. Korean Math. Soc., 55 (2018), 593-604.
![]() ![]() |