-
Previous Article
A forward Ergodic Closing Lemma and the Entropy Conjecture for nonsingular endomorphisms away from tangencies
- DCDS Home
- This Issue
-
Next Article
On global smooth solutions of 3-D compressible Euler equations with vanishing density in infinitely expanding balls
Spectral decomposition for rescaling expansive flows with rescaled shadowing
1. | Department of Mathematics, Chungnam National University, Daejeon 34134, Korea |
2. | School of Mathematical Sciences, Beihang University, Beijing 100191, China |
In this paper, we introduce the concepts of rescaled expansiveness and the rescaled shadowing property for flows on metric spaces which are dynamical properties, and present a spectral decomposition theorem for flows. More precisely, we prove that if a flow is rescaling expansive and has the rescaled shadowing property on a locally compact metric space, then it admits the spectral decomposition. Moreover, we show that if a flow on locally compact metric space has the rescaled shadowing property then its restriction on nonwandering set also has the rescaled shadowing property.
References:
[1] |
N. Aoki,
On the homeomorphisms with pseudo-orbit tracing property, Tokyo J. Math., 6 (1983), 329-334.
doi: 10.3836/tjm/1270213874. |
[2] |
V. Araujo, M. J. Pacifico, E. R. Pujals and M. Viana,
Singular-hyperbolic attractors are chaotic, Trans. Amer. Math. Soc., 361 (2009), 2431-2485.
doi: 10.1090/S0002-9947-08-04595-9. |
[3] |
A. Artigue,
Rescaled expansivity and separating flows, Discrete Contin. Dyn. Syst., 38 (2018), 4433-4447.
doi: 10.3934/dcds.2018193. |
[4] |
R. Bowen and P. Walters,
Expansive one-parameter flows, J. Differential Equations, 12 (1972), 180-193.
doi: 10.1016/0022-0396(72)90013-7. |
[5] |
W. Cordeiro, M. Denker and X. Zhang,
On specification and measure expansiveness, Discrete Contin. Dyn. Syst., 37 (2017), 1941-1957.
doi: 10.3934/dcds.2017082. |
[6] |
T. Das, K. Lee, D. Richeson and J. Wiseman,
Spectral decomposition for topologically Anosov homemorphisms on noncompact and non-metrizable spaces, Topology Appl., 160 (2013), 149-158.
doi: 10.1016/j.topol.2012.10.010. |
[7] |
M. Hurley,
Chain recurrence, semiflows, and gradients, J. Dynam. Differential Equations, 7 (1995), 437-456.
doi: 10.1007/BF02219371. |
[8] |
M. Komuro, Expansive properties of Lorenz attractors, The Theory of Dynamical Systems and Its Applications to Nonlinear Problems, WWorld Sci. Publishing, Singapore, (1984), 4–26. |
[9] |
M. Komuro,
One-parameter flows with the pseudo orbit tracing property, Monatsh. Math., 98 (1984), 219-253.
doi: 10.1007/BF01507750. |
[10] |
K.-H. Lee,
Weak attractor in flows on noncompact spaces, Dyn. Syst. Appl., 5 (1996), 503-519.
|
[11] |
K. Lee, N.-T. Nguyen and Y. N. Yang,
Topological stability and spectral decomposition for homeomophisms on noncompact spaces, Discrete Contin. Dyn. Syst., 38 (2018), 2487-2503.
doi: 10.3934/dcds.2018103. |
[12] |
Z. Nitecki,
Explosions in completely unstable flows. Ⅰ. Preventing explosions, Trans. Amer. Math. Soc., 245 (1978), 43-61.
doi: 10.2307/1998856. |
[13] |
S. Smale,
Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.
doi: 10.1090/S0002-9904-1967-11798-1. |
[14] |
X. Wen and L. Wen,
A rescaled expansiveness of flows, Trans. Amer. Math. Soc., 371 (2019), 3179-3207.
doi: 10.1090/tran/7382. |
[15] |
X. Wen and Y. N. Yu,
Equivalent definitions of rescaled expansiveness, J. Korean Math. Soc., 55 (2018), 593-604.
|
show all references
References:
[1] |
N. Aoki,
On the homeomorphisms with pseudo-orbit tracing property, Tokyo J. Math., 6 (1983), 329-334.
doi: 10.3836/tjm/1270213874. |
[2] |
V. Araujo, M. J. Pacifico, E. R. Pujals and M. Viana,
Singular-hyperbolic attractors are chaotic, Trans. Amer. Math. Soc., 361 (2009), 2431-2485.
doi: 10.1090/S0002-9947-08-04595-9. |
[3] |
A. Artigue,
Rescaled expansivity and separating flows, Discrete Contin. Dyn. Syst., 38 (2018), 4433-4447.
doi: 10.3934/dcds.2018193. |
[4] |
R. Bowen and P. Walters,
Expansive one-parameter flows, J. Differential Equations, 12 (1972), 180-193.
doi: 10.1016/0022-0396(72)90013-7. |
[5] |
W. Cordeiro, M. Denker and X. Zhang,
On specification and measure expansiveness, Discrete Contin. Dyn. Syst., 37 (2017), 1941-1957.
doi: 10.3934/dcds.2017082. |
[6] |
T. Das, K. Lee, D. Richeson and J. Wiseman,
Spectral decomposition for topologically Anosov homemorphisms on noncompact and non-metrizable spaces, Topology Appl., 160 (2013), 149-158.
doi: 10.1016/j.topol.2012.10.010. |
[7] |
M. Hurley,
Chain recurrence, semiflows, and gradients, J. Dynam. Differential Equations, 7 (1995), 437-456.
doi: 10.1007/BF02219371. |
[8] |
M. Komuro, Expansive properties of Lorenz attractors, The Theory of Dynamical Systems and Its Applications to Nonlinear Problems, WWorld Sci. Publishing, Singapore, (1984), 4–26. |
[9] |
M. Komuro,
One-parameter flows with the pseudo orbit tracing property, Monatsh. Math., 98 (1984), 219-253.
doi: 10.1007/BF01507750. |
[10] |
K.-H. Lee,
Weak attractor in flows on noncompact spaces, Dyn. Syst. Appl., 5 (1996), 503-519.
|
[11] |
K. Lee, N.-T. Nguyen and Y. N. Yang,
Topological stability and spectral decomposition for homeomophisms on noncompact spaces, Discrete Contin. Dyn. Syst., 38 (2018), 2487-2503.
doi: 10.3934/dcds.2018103. |
[12] |
Z. Nitecki,
Explosions in completely unstable flows. Ⅰ. Preventing explosions, Trans. Amer. Math. Soc., 245 (1978), 43-61.
doi: 10.2307/1998856. |
[13] |
S. Smale,
Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.
doi: 10.1090/S0002-9904-1967-11798-1. |
[14] |
X. Wen and L. Wen,
A rescaled expansiveness of flows, Trans. Amer. Math. Soc., 371 (2019), 3179-3207.
doi: 10.1090/tran/7382. |
[15] |
X. Wen and Y. N. Yu,
Equivalent definitions of rescaled expansiveness, J. Korean Math. Soc., 55 (2018), 593-604.
|
[1] |
Alfonso Artigue. Rescaled expansivity and separating flows. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4433-4447. doi: 10.3934/dcds.2018193 |
[2] |
Manseob Lee, Jumi Oh, Xiao Wen. Diffeomorphisms with a generalized Lipschitz shadowing property. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1913-1927. doi: 10.3934/dcds.2020346 |
[3] |
Fang Zhang, Yunhua Zhou. On the limit quasi-shadowing property. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2861-2879. doi: 10.3934/dcds.2017123 |
[4] |
Jonathan Meddaugh. Shadowing as a structural property of the space of dynamical systems. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2439-2451. doi: 10.3934/dcds.2021197 |
[5] |
Jihoon Lee, Ngocthach Nguyen. Flows with the weak two-sided limit shadowing property. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4375-4395. doi: 10.3934/dcds.2021040 |
[6] |
Keonhee Lee, Ngoc-Thach Nguyen, Yinong Yang. Topological stability and spectral decomposition for homeomorphisms on noncompact spaces. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2487-2503. doi: 10.3934/dcds.2018103 |
[7] |
Xijun Hu, Li Wu. Decomposition of spectral flow and Bott-type iteration formula. Electronic Research Archive, 2020, 28 (1) : 127-148. doi: 10.3934/era.2020008 |
[8] |
Welington Cordeiro, Manfred Denker, Xuan Zhang. On specification and measure expansiveness. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1941-1957. doi: 10.3934/dcds.2017082 |
[9] |
Welington Cordeiro, Manfred Denker, Xuan Zhang. Corrigendum to: On specification and measure expansiveness. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3705-3706. doi: 10.3934/dcds.2018160 |
[10] |
Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317 |
[11] |
Edson Pindza, Francis Youbi, Eben Maré, Matt Davison. Barycentric spectral domain decomposition methods for valuing a class of infinite activity Lévy models. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 625-643. doi: 10.3934/dcdss.2019040 |
[12] |
Sergei Yu. Pilyugin. Variational shadowing. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 733-737. doi: 10.3934/dcdsb.2010.14.733 |
[13] |
V. M. Gundlach, Yu. Kifer. Expansiveness, specification, and equilibrium states for random bundle transformations. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 89-120. doi: 10.3934/dcds.2000.6.89 |
[14] |
Lorenzo J. Díaz, Todd Fisher, M. J. Pacifico, José L. Vieitez. Entropy-expansiveness for partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4195-4207. doi: 10.3934/dcds.2012.32.4195 |
[15] |
Keonhee Lee, Kazuhiro Sakai. Various shadowing properties and their equivalence. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 533-540. doi: 10.3934/dcds.2005.13.533 |
[16] |
Will Brian, Jonathan Meddaugh, Brian Raines. Shadowing is generic on dendrites. Discrete and Continuous Dynamical Systems - S, 2019, 12 (8) : 2211-2220. doi: 10.3934/dcdss.2019142 |
[17] |
Shaobo Gan. A generalized shadowing lemma. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 627-632. doi: 10.3934/dcds.2002.8.627 |
[18] |
Sergey V. Bolotin. Shadowing chains of collision orbits. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 235-260. doi: 10.3934/dcds.2006.14.235 |
[19] |
S. Yu. Pilyugin, A. A. Rodionova, Kazuhiro Sakai. Orbital and weak shadowing properties. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 287-308. doi: 10.3934/dcds.2003.9.287 |
[20] |
Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]