
-
Previous Article
Li-Yorke Chaos for ultragraph shift spaces
- DCDS Home
- This Issue
-
Next Article
Dynamical obstruction to the existence of continuous sub-actions for interval maps with regularly varying property
Necessary conditions for tiling finitely generated amenable groups
1. | Laboratoire de Recherche en Informatique, Université Paris-Sud - CNRS - CentraleSupélec, Université Paris-Saclay, France |
2. | Departamento de Ingeniería Matemática, DIM-CMM, Universidad de Chile, Chile |
We consider a set of necessary conditions which are efficient heuristics for deciding when a set of Wang tiles cannot tile a group.
Piantadosi [
We consider two other conditions: the first, also given by Piantadosi [
We show that these last two conditions are equivalent. Joining and generalising approaches from both sides, we prove that they are necessary for having a valid tiling of any finitely generated amenable group, confirming a remark of Jeandel [
References:
[1] |
N. Aubrun, S. Barbieri and É. Moutot, The domino problem is undecidable on surface groups, 44th International Symposium on Mathematical Foundations of Computer Science, LIPIcs. Leibniz Int. Proc. Inform., Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 138 (2019), Art. 46, 14 pp. |
[2] |
N. Aubrun and J. Kari,
Tiling problems on Baumslag-Solitar groups, Computations and Universality 2013, Electron. Proc. Theor. Comput. Sci. (EPTCS), EPTCS, 128 (2013), 35-46.
doi: 10.4204/EPTCS.128.12. |
[3] |
A. Ballier and M. Stein,
The domino problem on groups of polynomial growth, Groups, Geometry, and Dynamics, 12 (2018), 93-105.
doi: 10.4171/GGD/439. |
[4] |
S. Barbieri, A geometric simulation theorem on direct products of finitely generated groups, Discrete Analysis, (2019), Paper No. 9, 25 pp. |
[5] |
S. Barbieri, Shift Spaces on Groups: Computability and Dynamics, Ph.D thesis, Université de Lyon, 2017, https://tel.archives-ouvertes.fr/tel-01563302. |
[6] |
S. Barbieri and M. Sablik,
A generalization of the simulation theorem for semidirect products, Ergodic Theory and Dynamical Systems, 39 (2019), 3185-3206.
doi: 10.1017/etds.2018.21. |
[7] |
R. Berger, The undecidability of the domino problem, Memoirs of the American Mathematical Society, (1966), 72 pp. |
[8] |
D. Carroll and A. Penland,
Periodic points on shifts of finite type and commensurability invariants of groups, New York Journal of Mathematics, 21 (2015), 811-822.
|
[9] |
J.-R. Chazottes, J.-M. Gambaudo and F. Gautero,
Tilings of the plane and Thurston semi-norm, Geometriae Dedicata, 173 (2014), 129-142.
doi: 10.1007/s10711-013-9932-4. |
[10] |
D. B. Cohen and C. Goodman-Strauss,
Strongly aperiodic subshifts on surface groups, Groups, Geometry, and Dynamics, 11 (2017), 1041-1059.
doi: 10.4171/GGD/421. |
[11] |
D. B. Cohen, C. Goodman-Strauss and Y. Rieck, Strongly aperiodic subshifts of finite type on hyperbolic groups, arXiv: 1706.01387. |
[12] |
H. Maturana Cornejo and M. Schraudner, Weakly aperiodic $\mathbb{F}_{d}$-Wang subshift with minimal alphabet size and its complexity function, Unpublished preprint, (2018). |
[13] |
E. Jeandel, Aperiodic subshifts on polycyclic groups, arXiv: 1510.02360. |
[14] |
E. Jeandel, Translation-like actions and aperiodic subshifts on groups, arXiv: 1508.06419. |
[15] |
E. Jeandel and M. Rao, An aperiodic set of 11 Wang tiles, arXiv: 1506.06492. |
[16] |
E. Jeandel and P. Vanier, The Undecidability of the Domino Problem, Unpublished Book Chapter. |
[17] |
D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511626302.![]() ![]() ![]() |
[18] |
S. Mozes,
Aperiodic tilings, Inventiones Mathematicae, 128 (1997), 603-611.
doi: 10.1007/s002220050153. |
[19] |
S. T. Piantadosi,
Symbolic dynamics on free groups, Discrete and Continuous Dynamical Systems, 20 (2008), 725-738.
doi: 10.3934/dcds.2008.20.725. |
[20] |
A. Sahin, M. Schraudner and I. Ugarcovic, A strongly aperiodic shift of finite type for the discrete Heisenberg group, preprint, (2014), announced at: http://www.dim.uchile.cl/ mschraudner/SyDyGr/Talks/sahin_cmmdec2014.pdf. |
[21] |
H. Wang,
Proving theorems by pattern recognition. Ⅱ, Bell System Technical Journal, 40 (1961), 1-41.
doi: 10.1007/978-94-009-2356-0_9. |
show all references
References:
[1] |
N. Aubrun, S. Barbieri and É. Moutot, The domino problem is undecidable on surface groups, 44th International Symposium on Mathematical Foundations of Computer Science, LIPIcs. Leibniz Int. Proc. Inform., Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 138 (2019), Art. 46, 14 pp. |
[2] |
N. Aubrun and J. Kari,
Tiling problems on Baumslag-Solitar groups, Computations and Universality 2013, Electron. Proc. Theor. Comput. Sci. (EPTCS), EPTCS, 128 (2013), 35-46.
doi: 10.4204/EPTCS.128.12. |
[3] |
A. Ballier and M. Stein,
The domino problem on groups of polynomial growth, Groups, Geometry, and Dynamics, 12 (2018), 93-105.
doi: 10.4171/GGD/439. |
[4] |
S. Barbieri, A geometric simulation theorem on direct products of finitely generated groups, Discrete Analysis, (2019), Paper No. 9, 25 pp. |
[5] |
S. Barbieri, Shift Spaces on Groups: Computability and Dynamics, Ph.D thesis, Université de Lyon, 2017, https://tel.archives-ouvertes.fr/tel-01563302. |
[6] |
S. Barbieri and M. Sablik,
A generalization of the simulation theorem for semidirect products, Ergodic Theory and Dynamical Systems, 39 (2019), 3185-3206.
doi: 10.1017/etds.2018.21. |
[7] |
R. Berger, The undecidability of the domino problem, Memoirs of the American Mathematical Society, (1966), 72 pp. |
[8] |
D. Carroll and A. Penland,
Periodic points on shifts of finite type and commensurability invariants of groups, New York Journal of Mathematics, 21 (2015), 811-822.
|
[9] |
J.-R. Chazottes, J.-M. Gambaudo and F. Gautero,
Tilings of the plane and Thurston semi-norm, Geometriae Dedicata, 173 (2014), 129-142.
doi: 10.1007/s10711-013-9932-4. |
[10] |
D. B. Cohen and C. Goodman-Strauss,
Strongly aperiodic subshifts on surface groups, Groups, Geometry, and Dynamics, 11 (2017), 1041-1059.
doi: 10.4171/GGD/421. |
[11] |
D. B. Cohen, C. Goodman-Strauss and Y. Rieck, Strongly aperiodic subshifts of finite type on hyperbolic groups, arXiv: 1706.01387. |
[12] |
H. Maturana Cornejo and M. Schraudner, Weakly aperiodic $\mathbb{F}_{d}$-Wang subshift with minimal alphabet size and its complexity function, Unpublished preprint, (2018). |
[13] |
E. Jeandel, Aperiodic subshifts on polycyclic groups, arXiv: 1510.02360. |
[14] |
E. Jeandel, Translation-like actions and aperiodic subshifts on groups, arXiv: 1508.06419. |
[15] |
E. Jeandel and M. Rao, An aperiodic set of 11 Wang tiles, arXiv: 1506.06492. |
[16] |
E. Jeandel and P. Vanier, The Undecidability of the Domino Problem, Unpublished Book Chapter. |
[17] |
D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511626302.![]() ![]() ![]() |
[18] |
S. Mozes,
Aperiodic tilings, Inventiones Mathematicae, 128 (1997), 603-611.
doi: 10.1007/s002220050153. |
[19] |
S. T. Piantadosi,
Symbolic dynamics on free groups, Discrete and Continuous Dynamical Systems, 20 (2008), 725-738.
doi: 10.3934/dcds.2008.20.725. |
[20] |
A. Sahin, M. Schraudner and I. Ugarcovic, A strongly aperiodic shift of finite type for the discrete Heisenberg group, preprint, (2014), announced at: http://www.dim.uchile.cl/ mschraudner/SyDyGr/Talks/sahin_cmmdec2014.pdf. |
[21] |
H. Wang,
Proving theorems by pattern recognition. Ⅱ, Bell System Technical Journal, 40 (1961), 1-41.
doi: 10.1007/978-94-009-2356-0_9. |

[1] |
Steven T. Piantadosi. Symbolic dynamics on free groups. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 725-738. doi: 10.3934/dcds.2008.20.725 |
[2] |
Yunping Wang, Ercai Chen, Xiaoyao Zhou. Mean dimension theory in symbolic dynamics for finitely generated amenable groups. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022050 |
[3] |
Nicola Soave, Susanna Terracini. Symbolic dynamics for the $N$-centre problem at negative energies. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3245-3301. doi: 10.3934/dcds.2012.32.3245 |
[4] |
Nicola Soave, Susanna Terracini. Addendum to: Symbolic dynamics for the $N$-centre problem at negative energies. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3825-3829. doi: 10.3934/dcds.2013.33.3825 |
[5] |
Samuel R. Kaplan, Ernesto A. Lacomba, Jaume Llibre. Symbolic dynamics of the elliptic rectilinear restricted 3--body problem. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 541-555. doi: 10.3934/dcdss.2008.1.541 |
[6] |
Jim Wiseman. Symbolic dynamics from signed matrices. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 621-638. doi: 10.3934/dcds.2004.11.621 |
[7] |
George Osipenko, Stephen Campbell. Applied symbolic dynamics: attractors and filtrations. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 43-60. doi: 10.3934/dcds.1999.5.43 |
[8] |
Michael Hochman. A note on universality in multidimensional symbolic dynamics. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 301-314. doi: 10.3934/dcdss.2009.2.301 |
[9] |
Jose S. Cánovas, Tönu Puu, Manuel Ruiz Marín. Detecting chaos in a duopoly model via symbolic dynamics. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 269-278. doi: 10.3934/dcdsb.2010.13.269 |
[10] |
Dieter Mayer, Fredrik Strömberg. Symbolic dynamics for the geodesic flow on Hecke surfaces. Journal of Modern Dynamics, 2008, 2 (4) : 581-627. doi: 10.3934/jmd.2008.2.581 |
[11] |
Frédéric Naud. Birkhoff cones, symbolic dynamics and spectrum of transfer operators. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 581-598. doi: 10.3934/dcds.2004.11.581 |
[12] |
Fryderyk Falniowski, Marcin Kulczycki, Dominik Kwietniak, Jian Li. Two results on entropy, chaos and independence in symbolic dynamics. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3487-3505. doi: 10.3934/dcdsb.2015.20.3487 |
[13] |
David Ralston. Heaviness in symbolic dynamics: Substitution and Sturmian systems. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 287-300. doi: 10.3934/dcdss.2009.2.287 |
[14] |
Mike Boyle. The work of Mike Hochman on multidimensional symbolic dynamics and Borel dynamics. Journal of Modern Dynamics, 2019, 15: 427-435. doi: 10.3934/jmd.2019026 |
[15] |
Anke D. Pohl. Symbolic dynamics for the geodesic flow on two-dimensional hyperbolic good orbifolds. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2173-2241. doi: 10.3934/dcds.2014.34.2173 |
[16] |
Lorenzo Sella, Pieter Collins. Computation of symbolic dynamics for two-dimensional piecewise-affine maps. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 739-767. doi: 10.3934/dcdsb.2011.15.739 |
[17] |
Snir Ben Ovadia. Symbolic dynamics for non-uniformly hyperbolic diffeomorphisms of compact smooth manifolds. Journal of Modern Dynamics, 2018, 13: 43-113. doi: 10.3934/jmd.2018013 |
[18] |
Marian Gidea, Yitzchak Shmalo. Combinatorial approach to detection of fixed points, periodic orbits, and symbolic dynamics. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6123-6148. doi: 10.3934/dcds.2018264 |
[19] |
A. Yu. Ol'shanskii and M. V. Sapir. The conjugacy problem for groups, and Higman embeddings. Electronic Research Announcements, 2003, 9: 40-50. |
[20] |
H. M. Hastings, S. Silberger, M. T. Weiss, Y. Wu. A twisted tensor product on symbolic dynamical systems and the Ashley's problem. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 549-558. doi: 10.3934/dcds.2003.9.549 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]