April  2020, 40(4): 2347-2365. doi: 10.3934/dcds.2020117

Li-Yorke Chaos for ultragraph shift spaces

1. 

UFSC – Departamento de Matemática, Florianópolis, SC 88040-900, Brazil

2. 

IFRS – Campus Canoas, Canoas, RS 92412-240, Brazil

* Corresponding author: Daniel Gonçalves

Received  July 2019 Published  January 2020

Recently, in connection with C*-algebra theory, the first author and Danilo Royer introduced ultragraph shift spaces. In this paper we define a family of metrics for the topology in such spaces, and use these metrics to study the existence of chaos in the shift. In particular we characterize all ultragraph shift spaces that have Li-Yorke chaos (an uncountable scrambled set), and prove that such property implies the existence of a perfect and scrambled set in the ultragraph shift space. Furthermore, this scrambled set can be chosen compact, which is not the case for a labelled edge shift (with the product topology) of an infinite graph.

Citation: Daniel Gonçalves, Bruno Brogni Uggioni. Li-Yorke Chaos for ultragraph shift spaces. Discrete & Continuous Dynamical Systems - A, 2020, 40 (4) : 2347-2365. doi: 10.3934/dcds.2020117
References:
[1]

G. Abrams, P. Ara and M. S. Molina, Leavitt Path Algebras, Lecture Notes in Mathematics, 2191. Springer, London, 2017.  Google Scholar

[2]

E. Akin and S. Kolyada, Li-Yorke sensitivity, Nonlinearity, 16 (2003), 1421-1433.  doi: 10.1088/0951-7715/16/4/313.  Google Scholar

[3]

G. G. de Castro and D. Gonçalves, KMS and ground states on ultragraph C*-algebras, Integral Equations Operator Theory, 90, (2018), Art. 63, 23 pp. doi: 10.1007/s00020-018-2490-2.  Google Scholar

[4]

T. Ceccherini-Silberstein and M. Coornaert, A generalization of the Curtis-Hedlund theorem, Theoret. Comput. Sci, 400, (2008), 225–229. doi: 10.1016/j.tcs.2008.02.050.  Google Scholar

[5]

X. P. Dai and X. J. Tang, Devaney chaos, Li-Yorke chaos, and multi-dimensional Li-Yorke chaos for topological dynamics, J Differential Equations, 263 (2017), 5521-5553.  doi: 10.1016/j.jde.2017.06.021.  Google Scholar

[6]

T. Downarowicz and Y. Lacroix, Measure-theoretic chaos, Ergodic Theory Dynam. Systems, 34 (2014), 110-131.  doi: 10.1017/etds.2012.117.  Google Scholar

[7]

G. Edgar, Measure, Topology, and Fractal Geometry, Second edition, Undergraduate Texts in Mathematics, Springer, New York, 2008. doi: 10.1007/978-0-387-74749-1.  Google Scholar

[8]

F. Garcia-Ramos and L. Jin, Mean proximality and mean Li-Yorke chaos, Proc. Amer. Math. Soc., 145 (2017), 2959-2969.  doi: 10.1090/proc/13440.  Google Scholar

[9]

D. Gonçalves and D. Royer, Infinite alphabet edge shift spaces via ultragraphs and their C*-algebras, Int. Math. Res. Not. IMRN, 2019 (2019), 2177-2203.  doi: 10.1093/imrn/rnx175.  Google Scholar

[10]

D. Gonçalves and D. Royer, $(M+1)$-step shift spaces that are not conjugate to $M$-step shift spaces, Bull. Sci. Math., 139 (2015), 178-183.  doi: 10.1016/j.bulsci.2014.08.007.  Google Scholar

[11]

D. Gonçalves and D. Royer, Ultragraphs and shift spaces over infinite alphabets, Bull. Sci. Math., 141 (2017), 25-45.  doi: 10.1016/j.bulsci.2016.10.002.  Google Scholar

[12]

D. Gonçalves and M. Sobottka, Continuous shift commuting maps between ultragraph shift spaces, Discrete Contin. Dyn. Syst., 39 (2019), 1033-1048.  doi: 10.3934/dcds.2019043.  Google Scholar

[13]

D. GonçalvesM. Sobottka and C. Starling, Inverse semigroup shifts over countable alphabets, Semigroup Forum, 96 (2018), 203-240.  doi: 10.1007/s00233-017-9858-5.  Google Scholar

[14]

D. GonçalvesM. Sobottka and C. Starling, Sliding block codes between shift spaces over infinite alphabets, Math. Nachr., 289 (2016), 2178-2191.  doi: 10.1002/mana.201500309.  Google Scholar

[15]

D. GonçalvesM. Sobottka and C. Starling, Two-sided shift spaces over infinite alphabets, J. Aust. Math. Soc., 103 (2017), 357-386.  doi: 10.1017/S1446788717000039.  Google Scholar

[16]

D. Gonçalves and B. B. Uggioni, Ultragraph shift spaces and chaos, Bull. Sci. math., 158 (2019), 102807, 23 pp. doi: 10.1016/j.bulsci.2019.102807.  Google Scholar

[17]

S. F. Kolyada, Li-Yorke sensitivity and other concepts of chaos, Ukrainian Math. J., 56 (2004), 1242-1257.  doi: 10.1007/s11253-005-0055-4.  Google Scholar

[18]

T. Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly, 82 (1975), 985-992.  doi: 10.1080/00029890.1975.11994008.  Google Scholar

[19]

A. E. Marrero and P. S. Muhly, Groupoid and inverse semigroup presentations of ultragraph $C^*$-algebras, Semigroup Forum, 77 (2008), 399-422.  doi: 10.1007/s00233-008-9046-8.  Google Scholar

[20]

P. Oprocha and P. Wilczyński, Shift spaces and distributional chaos, Chaos Solitons Fractals, 31 (2007), 347-355.  doi: 10.1016/j.chaos.2005.09.069.  Google Scholar

[21]

W. Ott, M. Tomforde and P. N. Willis, One-sided shift spaces over infinite alphabets, New York J. Math., NYJM Monographs, State University of New York, University at Albany, Albany, NY, 5 (2014), 54 pp.  Google Scholar

[22]

K. Petersen, Chains, entropy, coding, Ergodic Theory Dynam. Systems, 6 (1986), 415-448.  doi: 10.1017/S014338570000359X.  Google Scholar

[23]

B. E. Raines and T. Underwood, Scrambled sets in shift spaces on a countable alphabet, Proc. Amer. Math. Soc., 144 (2016), 217-224.  doi: 10.1090/proc/12690.  Google Scholar

[24]

I. A. Salama, Topological entropy and recurrence of countable chains, Pacific Journal of Mathematics, 134 (1988), 325-341.  doi: 10.2140/pjm.1988.134.325.  Google Scholar

[25]

M. Sobottka and D. Gonçalves, A note on the definition of sliding block codes and the Curtis-Hedlund-Lyndon theorem, J. Cell. Autom., 12 (2017), 209-215.   Google Scholar

[26]

M. Tomforde, A unified approch to Exel-Laca algebras and $C^*$-algebras associated to graphs, J. Operator Theory, 50 (2003), 345-368.   Google Scholar

[27]

S. B. G. Webster, The path space of a directed graph, Proc. Amer. Math. Soc., 142 (2014), 213-225.  doi: 10.1090/S0002-9939-2013-11755-7.  Google Scholar

show all references

References:
[1]

G. Abrams, P. Ara and M. S. Molina, Leavitt Path Algebras, Lecture Notes in Mathematics, 2191. Springer, London, 2017.  Google Scholar

[2]

E. Akin and S. Kolyada, Li-Yorke sensitivity, Nonlinearity, 16 (2003), 1421-1433.  doi: 10.1088/0951-7715/16/4/313.  Google Scholar

[3]

G. G. de Castro and D. Gonçalves, KMS and ground states on ultragraph C*-algebras, Integral Equations Operator Theory, 90, (2018), Art. 63, 23 pp. doi: 10.1007/s00020-018-2490-2.  Google Scholar

[4]

T. Ceccherini-Silberstein and M. Coornaert, A generalization of the Curtis-Hedlund theorem, Theoret. Comput. Sci, 400, (2008), 225–229. doi: 10.1016/j.tcs.2008.02.050.  Google Scholar

[5]

X. P. Dai and X. J. Tang, Devaney chaos, Li-Yorke chaos, and multi-dimensional Li-Yorke chaos for topological dynamics, J Differential Equations, 263 (2017), 5521-5553.  doi: 10.1016/j.jde.2017.06.021.  Google Scholar

[6]

T. Downarowicz and Y. Lacroix, Measure-theoretic chaos, Ergodic Theory Dynam. Systems, 34 (2014), 110-131.  doi: 10.1017/etds.2012.117.  Google Scholar

[7]

G. Edgar, Measure, Topology, and Fractal Geometry, Second edition, Undergraduate Texts in Mathematics, Springer, New York, 2008. doi: 10.1007/978-0-387-74749-1.  Google Scholar

[8]

F. Garcia-Ramos and L. Jin, Mean proximality and mean Li-Yorke chaos, Proc. Amer. Math. Soc., 145 (2017), 2959-2969.  doi: 10.1090/proc/13440.  Google Scholar

[9]

D. Gonçalves and D. Royer, Infinite alphabet edge shift spaces via ultragraphs and their C*-algebras, Int. Math. Res. Not. IMRN, 2019 (2019), 2177-2203.  doi: 10.1093/imrn/rnx175.  Google Scholar

[10]

D. Gonçalves and D. Royer, $(M+1)$-step shift spaces that are not conjugate to $M$-step shift spaces, Bull. Sci. Math., 139 (2015), 178-183.  doi: 10.1016/j.bulsci.2014.08.007.  Google Scholar

[11]

D. Gonçalves and D. Royer, Ultragraphs and shift spaces over infinite alphabets, Bull. Sci. Math., 141 (2017), 25-45.  doi: 10.1016/j.bulsci.2016.10.002.  Google Scholar

[12]

D. Gonçalves and M. Sobottka, Continuous shift commuting maps between ultragraph shift spaces, Discrete Contin. Dyn. Syst., 39 (2019), 1033-1048.  doi: 10.3934/dcds.2019043.  Google Scholar

[13]

D. GonçalvesM. Sobottka and C. Starling, Inverse semigroup shifts over countable alphabets, Semigroup Forum, 96 (2018), 203-240.  doi: 10.1007/s00233-017-9858-5.  Google Scholar

[14]

D. GonçalvesM. Sobottka and C. Starling, Sliding block codes between shift spaces over infinite alphabets, Math. Nachr., 289 (2016), 2178-2191.  doi: 10.1002/mana.201500309.  Google Scholar

[15]

D. GonçalvesM. Sobottka and C. Starling, Two-sided shift spaces over infinite alphabets, J. Aust. Math. Soc., 103 (2017), 357-386.  doi: 10.1017/S1446788717000039.  Google Scholar

[16]

D. Gonçalves and B. B. Uggioni, Ultragraph shift spaces and chaos, Bull. Sci. math., 158 (2019), 102807, 23 pp. doi: 10.1016/j.bulsci.2019.102807.  Google Scholar

[17]

S. F. Kolyada, Li-Yorke sensitivity and other concepts of chaos, Ukrainian Math. J., 56 (2004), 1242-1257.  doi: 10.1007/s11253-005-0055-4.  Google Scholar

[18]

T. Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly, 82 (1975), 985-992.  doi: 10.1080/00029890.1975.11994008.  Google Scholar

[19]

A. E. Marrero and P. S. Muhly, Groupoid and inverse semigroup presentations of ultragraph $C^*$-algebras, Semigroup Forum, 77 (2008), 399-422.  doi: 10.1007/s00233-008-9046-8.  Google Scholar

[20]

P. Oprocha and P. Wilczyński, Shift spaces and distributional chaos, Chaos Solitons Fractals, 31 (2007), 347-355.  doi: 10.1016/j.chaos.2005.09.069.  Google Scholar

[21]

W. Ott, M. Tomforde and P. N. Willis, One-sided shift spaces over infinite alphabets, New York J. Math., NYJM Monographs, State University of New York, University at Albany, Albany, NY, 5 (2014), 54 pp.  Google Scholar

[22]

K. Petersen, Chains, entropy, coding, Ergodic Theory Dynam. Systems, 6 (1986), 415-448.  doi: 10.1017/S014338570000359X.  Google Scholar

[23]

B. E. Raines and T. Underwood, Scrambled sets in shift spaces on a countable alphabet, Proc. Amer. Math. Soc., 144 (2016), 217-224.  doi: 10.1090/proc/12690.  Google Scholar

[24]

I. A. Salama, Topological entropy and recurrence of countable chains, Pacific Journal of Mathematics, 134 (1988), 325-341.  doi: 10.2140/pjm.1988.134.325.  Google Scholar

[25]

M. Sobottka and D. Gonçalves, A note on the definition of sliding block codes and the Curtis-Hedlund-Lyndon theorem, J. Cell. Autom., 12 (2017), 209-215.   Google Scholar

[26]

M. Tomforde, A unified approch to Exel-Laca algebras and $C^*$-algebras associated to graphs, J. Operator Theory, 50 (2003), 345-368.   Google Scholar

[27]

S. B. G. Webster, The path space of a directed graph, Proc. Amer. Math. Soc., 142 (2014), 213-225.  doi: 10.1090/S0002-9939-2013-11755-7.  Google Scholar

[1]

Marat Akhmet, Ejaily Milad Alejaily. Abstract similarity, fractals and chaos. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2479-2497. doi: 10.3934/dcdsb.2020191

[2]

Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361

[3]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[4]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[5]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[6]

Seung-Yeal Ha, Myeongju Kang, Bora Moon. Collective behaviors of a Winfree ensemble on an infinite cylinder. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2749-2779. doi: 10.3934/dcdsb.2020204

[7]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[8]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[9]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[10]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[11]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[12]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[13]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[14]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[15]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[16]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[17]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[18]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[19]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[20]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (102)
  • HTML views (76)
  • Cited by (0)

Other articles
by authors

[Back to Top]