April  2020, 40(4): 2367-2391. doi: 10.3934/dcds.2020118

On spikes concentrating on lines for a Neumann superlinear Ambrosetti-Prodi type problem

Department of Mathematics, Faculty of Sciences of Tunis, University of Tunis El Manar, Campus Universitaire, 2092 Tunis El Manar, Tunisia

* Corresponding author: F. Mahmoudi

Received  July 2019 Revised  November 2019 Published  January 2020

Fund Project: F. Mahmoudi is supported by Fondecyt Grant 1180526, CONICYT.

Given a smooth bounded domain
$ \Omega \subset \mathbb {R}^n $
and consider the problem
$ \left\{\begin{array} {cccccc} - \Delta u = |u|^p - \sigma &\hbox{in } \Omega \\ \dfrac{\partial u}{\partial \nu} = 0 &\hbox{on}\ \partial \Omega \end{array}\right. $
where
$ p $
is subcritical exponent (
$ p > 1 $
if
$ n = 2 $
and
$ 1 < p < \frac{n+2}{n-2} $
if
$ n \geq 3 $
),
$ \sigma > 0 $
is a large parameter and
$ \nu $
denotes the outward normal of
$ \partial\Omega $
. Let
$ \Gamma $
be an interior straighline intersecting orthogonally with
$ \partial\Omega $
. Assuming moreover that
$ \Gamma $
satisfies a non-degeneracy condition, we construct a new class of solutions which consist of large number of spikes concentrating on
$ \Gamma $
, showing as in [5,6] that higher dimensional concentration can exist without resonance condition.
Citation: Imene Bendahou, Zied Khemiri, Fethi Mahmoudi. On spikes concentrating on lines for a Neumann superlinear Ambrosetti-Prodi type problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (4) : 2367-2391. doi: 10.3934/dcds.2020118
References:
[1]

H. Amann and P. Hess, A multiplicity result for a class of elliptic boundary value problems, Proc. Ray. Soc. Edinburg Sect. A, 84 (1979), 145-151.  doi: 10.1017/S0308210500017017.  Google Scholar

[2]

A. AmbrosettiA. Malchiodi and W.-M. Ni, Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres. Ⅱ, Indiana Univ. Math. J., 53 (2004), 297-329.  doi: 10.1512/iumj.2004.53.2400.  Google Scholar

[3]

A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl., 93 (1972), 231-246.  doi: 10.1007/BF02412022.  Google Scholar

[4]

A. AmbrosettiE. Colorado and D. Ruiz, Multi-bump solutions to linearly coupled systems of nonlinear Schrödinger equations, Calculus of Variations. Calc. Var., 30 (2007), 85-112.  doi: 10.1007/s00526-006-0079-0.  Google Scholar

[5]

W. W. AoM. Musso and J. C. Wei, On spikes concentrating on line segments to a semilinear Neumann problem, Journal of Differential Equations, 251 (2011), 881-901.  doi: 10.1016/j.jde.2011.05.009.  Google Scholar

[6]

W. W. AoM. Musso and J. C. Wei, Triple junction solutions for a singularly perturbed Neumann problem, SIAM Journal on Mathematical Analysis, 43 (2011), 2519-2541.  doi: 10.1137/100812100.  Google Scholar

[7]

W. W. AoJ. C. Wei and J. Zeng, An optimal bound on the number of interior spike solutions for the Lin-Ni-Takagi problem, Journal of Functional Analysis, 265 (2013), 1324-1356.  doi: 10.1016/j.jfa.2013.06.016.  Google Scholar

[8]

H. Berestycki, Le nombre de solutions de certains problémes semi linéaires elliptiques, J. Func. Anal., 40 (1981), 1-29.  doi: 10.1016/0022-1236(81)90069-0.  Google Scholar

[9]

H. Berestycki and P.-L. Lions, Sharp existence results for a class of semilinear elliptic problems, Bol. Soc. Bras. Mat., 12 (1981), 9-19.  doi: 10.1007/BF02588317.  Google Scholar

[10]

M. S. Berger and E. Podolak, On the solutions of a nonlinear Dirichlet problem, Indiana Univ. Math. J., 24 (1974/75), 837-846.  doi: 10.1512/iumj.1975.24.24066.  Google Scholar

[11]

E. N. Dancer, A note on asymptotic uniqueness for some non linearities which change sign, Bull.Aust. Math. Soc., 61 (2000), 305-312.  doi: 10.1017/S0004972700022309.  Google Scholar

[12]

E. N. Dancer, On the uniqueness of the positive solution of a singularly perturbed problem, Rocky Mountain J. Math., 25 (1995), 957-975.  doi: 10.1216/rmjm/1181072198.  Google Scholar

[13]

E. N. Dancer, On the ranges of certain weakly nonlinear elliptic partial differential equations, J. Math. Pure Appl., 57 (1978), 351-366.   Google Scholar

[14]

E. N. Dancer and S. S. Yan, Multipeak solutions for a singular perturbed Neumann problem, Pacific J. Math., 189 (1999), 241-262.  doi: 10.2140/pjm.1999.189.241.  Google Scholar

[15]

E. N. Dancer and S. S. Yan, On the superlinear Lazer-McKenna conjecture. Ⅱ, Comm. in Partial Differential Equations, 30 (2005), 1331-1358.  doi: 10.1080/03605300500258865.  Google Scholar

[16]

E. N. Dancer and S. S. Yan, On the superlinear Lazer-McKenna conjecture, J. Differential Equations, 210 (2005), 317-351.  doi: 10.1016/j.jde.2004.07.017.  Google Scholar

[17]

E. N. Dancer and S. Santra, On the superlinear Lazer-McKenna conjecture: The nonhomogeneous case, Adv. Differential Equations, 12 (2007), 961-993.   Google Scholar

[18]

M. del PinoP. L. Felmer and J. C. Wei, On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal., 31 (1999), 63-79.  doi: 10.1137/S0036141098332834.  Google Scholar

[19]

M. del PinoP. L. Felmer and J. C. Wei, On the role of distance function in some singularly perturbed problems, Comm. PDE, 25 (2000), 155-177.  doi: 10.1080/03605300008821511.  Google Scholar

[20]

M. del PinoP. L. Felmer and J. C. Wei, Mutiple peak solutions for some singular perturbation problems, Cal. Var. PDE, 10 (2000), 119-134.  doi: 10.1007/s005260050147.  Google Scholar

[21]

M. del PinoF. Mahmoudi and M. Musso, Bubbling on boundary submanifolds for the Lin-Ni-Takagi problem at higher critical exponents, Journal of the European Mathematical Society, 16 (2014), 1687-1748.  doi: 10.4171/JEMS/473.  Google Scholar

[22]

M. del Pino and M. Musso, Bubbling and criticality in two and higher dimensions, Recent Advances in Elliptic and Parabolic Problems, World Sci. Publ., Hackensack, NJ, (2005), 41–59. doi: 10.1142/9789812702050_0004.  Google Scholar

[23]

M. del PinoM. Musso and F. Pacard, Bubbling along geodesics near the second critical exponent, J. Eur. Math. Soc. (JEMS), 12 (2010), 1553-1605.  doi: 10.4171/JEMS/241.  Google Scholar

[24]

S. B. DengF. Mahmoudi and M. Musso, Bubbling on boundary sub-manifolds for a semilinear Neumann problem near high critical exponents, Discrete and Continuous Dynamical Systems, 36 (2016), 3035-3076.  doi: 10.3934/dcds.2016.36.3035.  Google Scholar

[25]

S. B. DengM. Musso and A. Pistoia, Concentration on minimal submanifolds for a Yamabe type problem, Communications in Partial Differential Equations, 41 (2016), 1379-1425.  doi: 10.1080/03605302.2016.1209519.  Google Scholar

[26]

A. Gierer and H.Meinhardt, A thoery of biological pattern formation, Kybernetik, 12 (1972), 30–39, http://dx.doi.org/10.1007/BF00289234. Google Scholar

[27]

M. GrossiA. Pistoia and J. C. Wei, Existence of multi-peak solutions for a semi-linear Neumann problem via non-smooth critical point theory, Cal. Var. PDE, 11 (2000), 143-175.  doi: 10.1007/PL00009907.  Google Scholar

[28]

C.-F. Gui and J. C. Wei, On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Can. J. Math., 52 (2000), 522-538.  doi: 10.4153/CJM-2000-024-x.  Google Scholar

[29]

C.-F. GuiJ. C. Wei and M. Winter, Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 47-82.  doi: 10.1016/S0294-1449(99)00104-3.  Google Scholar

[30]

C.-F. Gui and J. C. Wei, Multiple interior spike solutions for some singular perturbed Neumann problems, J. Diff. Eqns., 158 (1999), 1-27.  doi: 10.1016/S0022-0396(99)80016-3.  Google Scholar

[31]

P. Hess and B. Ruf, On a superlinear elliptic boundary value problem, Math. Z., 164 (1978), 9-14.  doi: 10.1007/BF01214785.  Google Scholar

[32]

L. Hollman and P. J. McKenna, A conjecture on multiple solutions of a nonlinear elliptic boundary value problem: Some numerical evidence, Commun. Pure Appl. Anal., 10 (2011), 785-802.  doi: 10.3934/cpaa.2011.10.785.  Google Scholar

[33]

N. Kapouleas, Complete CMC surfaces in Euclidean three-space, Ann. of Math., 131 (1990), 239-330.  doi: 10.2307/1971494.  Google Scholar

[34]

J. L. Kazdan and F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math., 28 (1975), 567-597.  doi: 10.1002/cpa.3160280502.  Google Scholar

[35]

Z. Khemiri, F. Mahmoudi and A. Messaoudi, Concentration on submanifolds for an Ambrosetti-Prodi type problem, Calc. Var. Partial Differential Equations, 56 (2017), Art. 19, 40 pp. doi: 10.1007/s00526-017-1117-9.  Google Scholar

[36]

M. K. Kwong and L. Zhang, Uniqueness of positive solutions of $\Delta u + f(u) = 0$ in an annulus, Diferential Integral Equations, 4 (1991), 583-599.   Google Scholar

[37]

A. C. Lazer and P. J. McKenna, On the number of solutions of a nonlinear Dirichlet problem, J. Math. Anal. Appl., 84 (1981), 282-294.  doi: 10.1016/0022-247X(81)90166-9.  Google Scholar

[38]

G. B. LiS. S. Yan and J. F. Yang, The super linear Lazer-McKenna conjecture for an elliptic problem with critical growth. Ⅱ, J. Differential Equations, 227 (2006), 301-332.  doi: 10.1016/j.jde.2006.02.011.  Google Scholar

[39]

F.-H. LinW.-M. Ni and J.-C. Wei, On the number of interior peak solutions for a singularly perturbed Neumann problem, Comm. Pure Appl. Math., 60 (2007), 252-281.  doi: 10.1002/cpa.20139.  Google Scholar

[40]

C.-S. LinW.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27.  doi: 10.1016/0022-0396(88)90147-7.  Google Scholar

[41]

F. Mahmoudi and A. Malchiodi, Concentration on minimal sub manifolds for a singularly perturbed Neumann problem, Adv. in Math., 209 (2007), 460-525.  doi: 10.1016/j.aim.2006.05.014.  Google Scholar

[42]

F. Mahmoudi and A. Malchiodi, Concentration at manifolds of arbitrary dimension for a singularly perturbed Neumann problem, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 17 (2006), 279-290.  doi: 10.4171/RLM/469.  Google Scholar

[43]

A. Malchiodi, Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains, Geom. Funct. Anal., 15 (2005), 1162-1222.  doi: 10.1007/s00039-005-0542-7.  Google Scholar

[44]

A. Malchiodi, Some new entire solutions of semilinear elliptic equations on $\mathbb{R}^n$, Advances in Mathematics, 221 (2009), 1843-1909.  doi: 10.1016/j.aim.2009.03.012.  Google Scholar

[45]

A. Malchiodi and M. Montenegro, Boundary concentration phenomena for a singularly perturbed ellptic problem, Comm. Pure Appl. Math., 55 (2002), 1507-1508.  doi: 10.1002/cpa.10049.  Google Scholar

[46]

A. Malchiodi and M. Montenegro, Multidimensional boundary layers for a singularly perturbed Neumann problem, Duke Math. J., 124 (2004), 105-143.  doi: 10.1215/S0012-7094-04-12414-5.  Google Scholar

[47]

A. MalchiodiW.-M. Ni and J. C. Wei, Multiple clustered layer solutions for semi-linear Neumann problems on a ball, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 143-163.  doi: 10.1016/j.anihpc.2004.05.003.  Google Scholar

[48]

B. B. Manna and S. Santra, On the Hollman McKenna conjecture: Interior concentration On Geodesics, Discrete Contin. Dyn. Syst., 36 (2016), 5595-5626.   Google Scholar

[49]

J. Mawhin, Ambrosetti-Prodi type results in nonlinear boundary value problems, Differential Equations and Mathematical Physics, Lecture Notes in Math., 1285 (1987), 290-313.  doi: 10.1007/BFb0080609.  Google Scholar

[50]

J. Mawhin, The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the $p$-Laplacian, J. Eur. Math. Soc. (JEMS), 8 (2006), 375-388.  doi: 10.4171/JEMS/58.  Google Scholar

[51]

R. Mazzeo and F. Pacard, CMC surfaces with Delaunay ends, Comm. Anal. Geom., 9 (2001), 169-237.  doi: 10.4310/CAG.2001.v9.n1.a6.  Google Scholar

[52]

W.-M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices of Amer. Math. Soc., 45 (1998), 9-18.   Google Scholar

[53]

W.-M. Ni and I. Takagi, On the shape of least energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851.  doi: 10.1002/cpa.3160440705.  Google Scholar

[54]

W.-M. Ni and I. Takagi, Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281.  doi: 10.1215/S0012-7094-93-07004-4.  Google Scholar

[55]

W.-M. Ni and J. C. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math., 48 (1995), 731-768.  doi: 10.1002/cpa.3160480704.  Google Scholar

[56]

J. C. Wei, On the boundary spike layer solutions of singularly perturbed semilinear Neumann problem, J. Diff. Eqns., 134 (1997), 104-133.  doi: 10.1006/jdeq.1996.3218.  Google Scholar

[57]

J. C. Wei and S. S. Yan, Lazer-McKenna conjecture: The critical case, J. Funct. Anal., 244 (2007), 639-667.  doi: 10.1016/j.jfa.2006.11.002.  Google Scholar

[58]

J. C. Wei and J. Yang, Concentration on lines for a singularly perturbed Neumann problem in two- dimensional domains, Indiana Univ. Math. J., 56 (2007), 3025-3073.  doi: 10.1512/iumj.2007.56.3133.  Google Scholar

show all references

References:
[1]

H. Amann and P. Hess, A multiplicity result for a class of elliptic boundary value problems, Proc. Ray. Soc. Edinburg Sect. A, 84 (1979), 145-151.  doi: 10.1017/S0308210500017017.  Google Scholar

[2]

A. AmbrosettiA. Malchiodi and W.-M. Ni, Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres. Ⅱ, Indiana Univ. Math. J., 53 (2004), 297-329.  doi: 10.1512/iumj.2004.53.2400.  Google Scholar

[3]

A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl., 93 (1972), 231-246.  doi: 10.1007/BF02412022.  Google Scholar

[4]

A. AmbrosettiE. Colorado and D. Ruiz, Multi-bump solutions to linearly coupled systems of nonlinear Schrödinger equations, Calculus of Variations. Calc. Var., 30 (2007), 85-112.  doi: 10.1007/s00526-006-0079-0.  Google Scholar

[5]

W. W. AoM. Musso and J. C. Wei, On spikes concentrating on line segments to a semilinear Neumann problem, Journal of Differential Equations, 251 (2011), 881-901.  doi: 10.1016/j.jde.2011.05.009.  Google Scholar

[6]

W. W. AoM. Musso and J. C. Wei, Triple junction solutions for a singularly perturbed Neumann problem, SIAM Journal on Mathematical Analysis, 43 (2011), 2519-2541.  doi: 10.1137/100812100.  Google Scholar

[7]

W. W. AoJ. C. Wei and J. Zeng, An optimal bound on the number of interior spike solutions for the Lin-Ni-Takagi problem, Journal of Functional Analysis, 265 (2013), 1324-1356.  doi: 10.1016/j.jfa.2013.06.016.  Google Scholar

[8]

H. Berestycki, Le nombre de solutions de certains problémes semi linéaires elliptiques, J. Func. Anal., 40 (1981), 1-29.  doi: 10.1016/0022-1236(81)90069-0.  Google Scholar

[9]

H. Berestycki and P.-L. Lions, Sharp existence results for a class of semilinear elliptic problems, Bol. Soc. Bras. Mat., 12 (1981), 9-19.  doi: 10.1007/BF02588317.  Google Scholar

[10]

M. S. Berger and E. Podolak, On the solutions of a nonlinear Dirichlet problem, Indiana Univ. Math. J., 24 (1974/75), 837-846.  doi: 10.1512/iumj.1975.24.24066.  Google Scholar

[11]

E. N. Dancer, A note on asymptotic uniqueness for some non linearities which change sign, Bull.Aust. Math. Soc., 61 (2000), 305-312.  doi: 10.1017/S0004972700022309.  Google Scholar

[12]

E. N. Dancer, On the uniqueness of the positive solution of a singularly perturbed problem, Rocky Mountain J. Math., 25 (1995), 957-975.  doi: 10.1216/rmjm/1181072198.  Google Scholar

[13]

E. N. Dancer, On the ranges of certain weakly nonlinear elliptic partial differential equations, J. Math. Pure Appl., 57 (1978), 351-366.   Google Scholar

[14]

E. N. Dancer and S. S. Yan, Multipeak solutions for a singular perturbed Neumann problem, Pacific J. Math., 189 (1999), 241-262.  doi: 10.2140/pjm.1999.189.241.  Google Scholar

[15]

E. N. Dancer and S. S. Yan, On the superlinear Lazer-McKenna conjecture. Ⅱ, Comm. in Partial Differential Equations, 30 (2005), 1331-1358.  doi: 10.1080/03605300500258865.  Google Scholar

[16]

E. N. Dancer and S. S. Yan, On the superlinear Lazer-McKenna conjecture, J. Differential Equations, 210 (2005), 317-351.  doi: 10.1016/j.jde.2004.07.017.  Google Scholar

[17]

E. N. Dancer and S. Santra, On the superlinear Lazer-McKenna conjecture: The nonhomogeneous case, Adv. Differential Equations, 12 (2007), 961-993.   Google Scholar

[18]

M. del PinoP. L. Felmer and J. C. Wei, On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal., 31 (1999), 63-79.  doi: 10.1137/S0036141098332834.  Google Scholar

[19]

M. del PinoP. L. Felmer and J. C. Wei, On the role of distance function in some singularly perturbed problems, Comm. PDE, 25 (2000), 155-177.  doi: 10.1080/03605300008821511.  Google Scholar

[20]

M. del PinoP. L. Felmer and J. C. Wei, Mutiple peak solutions for some singular perturbation problems, Cal. Var. PDE, 10 (2000), 119-134.  doi: 10.1007/s005260050147.  Google Scholar

[21]

M. del PinoF. Mahmoudi and M. Musso, Bubbling on boundary submanifolds for the Lin-Ni-Takagi problem at higher critical exponents, Journal of the European Mathematical Society, 16 (2014), 1687-1748.  doi: 10.4171/JEMS/473.  Google Scholar

[22]

M. del Pino and M. Musso, Bubbling and criticality in two and higher dimensions, Recent Advances in Elliptic and Parabolic Problems, World Sci. Publ., Hackensack, NJ, (2005), 41–59. doi: 10.1142/9789812702050_0004.  Google Scholar

[23]

M. del PinoM. Musso and F. Pacard, Bubbling along geodesics near the second critical exponent, J. Eur. Math. Soc. (JEMS), 12 (2010), 1553-1605.  doi: 10.4171/JEMS/241.  Google Scholar

[24]

S. B. DengF. Mahmoudi and M. Musso, Bubbling on boundary sub-manifolds for a semilinear Neumann problem near high critical exponents, Discrete and Continuous Dynamical Systems, 36 (2016), 3035-3076.  doi: 10.3934/dcds.2016.36.3035.  Google Scholar

[25]

S. B. DengM. Musso and A. Pistoia, Concentration on minimal submanifolds for a Yamabe type problem, Communications in Partial Differential Equations, 41 (2016), 1379-1425.  doi: 10.1080/03605302.2016.1209519.  Google Scholar

[26]

A. Gierer and H.Meinhardt, A thoery of biological pattern formation, Kybernetik, 12 (1972), 30–39, http://dx.doi.org/10.1007/BF00289234. Google Scholar

[27]

M. GrossiA. Pistoia and J. C. Wei, Existence of multi-peak solutions for a semi-linear Neumann problem via non-smooth critical point theory, Cal. Var. PDE, 11 (2000), 143-175.  doi: 10.1007/PL00009907.  Google Scholar

[28]

C.-F. Gui and J. C. Wei, On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Can. J. Math., 52 (2000), 522-538.  doi: 10.4153/CJM-2000-024-x.  Google Scholar

[29]

C.-F. GuiJ. C. Wei and M. Winter, Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 47-82.  doi: 10.1016/S0294-1449(99)00104-3.  Google Scholar

[30]

C.-F. Gui and J. C. Wei, Multiple interior spike solutions for some singular perturbed Neumann problems, J. Diff. Eqns., 158 (1999), 1-27.  doi: 10.1016/S0022-0396(99)80016-3.  Google Scholar

[31]

P. Hess and B. Ruf, On a superlinear elliptic boundary value problem, Math. Z., 164 (1978), 9-14.  doi: 10.1007/BF01214785.  Google Scholar

[32]

L. Hollman and P. J. McKenna, A conjecture on multiple solutions of a nonlinear elliptic boundary value problem: Some numerical evidence, Commun. Pure Appl. Anal., 10 (2011), 785-802.  doi: 10.3934/cpaa.2011.10.785.  Google Scholar

[33]

N. Kapouleas, Complete CMC surfaces in Euclidean three-space, Ann. of Math., 131 (1990), 239-330.  doi: 10.2307/1971494.  Google Scholar

[34]

J. L. Kazdan and F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math., 28 (1975), 567-597.  doi: 10.1002/cpa.3160280502.  Google Scholar

[35]

Z. Khemiri, F. Mahmoudi and A. Messaoudi, Concentration on submanifolds for an Ambrosetti-Prodi type problem, Calc. Var. Partial Differential Equations, 56 (2017), Art. 19, 40 pp. doi: 10.1007/s00526-017-1117-9.  Google Scholar

[36]

M. K. Kwong and L. Zhang, Uniqueness of positive solutions of $\Delta u + f(u) = 0$ in an annulus, Diferential Integral Equations, 4 (1991), 583-599.   Google Scholar

[37]

A. C. Lazer and P. J. McKenna, On the number of solutions of a nonlinear Dirichlet problem, J. Math. Anal. Appl., 84 (1981), 282-294.  doi: 10.1016/0022-247X(81)90166-9.  Google Scholar

[38]

G. B. LiS. S. Yan and J. F. Yang, The super linear Lazer-McKenna conjecture for an elliptic problem with critical growth. Ⅱ, J. Differential Equations, 227 (2006), 301-332.  doi: 10.1016/j.jde.2006.02.011.  Google Scholar

[39]

F.-H. LinW.-M. Ni and J.-C. Wei, On the number of interior peak solutions for a singularly perturbed Neumann problem, Comm. Pure Appl. Math., 60 (2007), 252-281.  doi: 10.1002/cpa.20139.  Google Scholar

[40]

C.-S. LinW.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27.  doi: 10.1016/0022-0396(88)90147-7.  Google Scholar

[41]

F. Mahmoudi and A. Malchiodi, Concentration on minimal sub manifolds for a singularly perturbed Neumann problem, Adv. in Math., 209 (2007), 460-525.  doi: 10.1016/j.aim.2006.05.014.  Google Scholar

[42]

F. Mahmoudi and A. Malchiodi, Concentration at manifolds of arbitrary dimension for a singularly perturbed Neumann problem, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 17 (2006), 279-290.  doi: 10.4171/RLM/469.  Google Scholar

[43]

A. Malchiodi, Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains, Geom. Funct. Anal., 15 (2005), 1162-1222.  doi: 10.1007/s00039-005-0542-7.  Google Scholar

[44]

A. Malchiodi, Some new entire solutions of semilinear elliptic equations on $\mathbb{R}^n$, Advances in Mathematics, 221 (2009), 1843-1909.  doi: 10.1016/j.aim.2009.03.012.  Google Scholar

[45]

A. Malchiodi and M. Montenegro, Boundary concentration phenomena for a singularly perturbed ellptic problem, Comm. Pure Appl. Math., 55 (2002), 1507-1508.  doi: 10.1002/cpa.10049.  Google Scholar

[46]

A. Malchiodi and M. Montenegro, Multidimensional boundary layers for a singularly perturbed Neumann problem, Duke Math. J., 124 (2004), 105-143.  doi: 10.1215/S0012-7094-04-12414-5.  Google Scholar

[47]

A. MalchiodiW.-M. Ni and J. C. Wei, Multiple clustered layer solutions for semi-linear Neumann problems on a ball, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 143-163.  doi: 10.1016/j.anihpc.2004.05.003.  Google Scholar

[48]

B. B. Manna and S. Santra, On the Hollman McKenna conjecture: Interior concentration On Geodesics, Discrete Contin. Dyn. Syst., 36 (2016), 5595-5626.   Google Scholar

[49]

J. Mawhin, Ambrosetti-Prodi type results in nonlinear boundary value problems, Differential Equations and Mathematical Physics, Lecture Notes in Math., 1285 (1987), 290-313.  doi: 10.1007/BFb0080609.  Google Scholar

[50]

J. Mawhin, The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the $p$-Laplacian, J. Eur. Math. Soc. (JEMS), 8 (2006), 375-388.  doi: 10.4171/JEMS/58.  Google Scholar

[51]

R. Mazzeo and F. Pacard, CMC surfaces with Delaunay ends, Comm. Anal. Geom., 9 (2001), 169-237.  doi: 10.4310/CAG.2001.v9.n1.a6.  Google Scholar

[52]

W.-M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices of Amer. Math. Soc., 45 (1998), 9-18.   Google Scholar

[53]

W.-M. Ni and I. Takagi, On the shape of least energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851.  doi: 10.1002/cpa.3160440705.  Google Scholar

[54]

W.-M. Ni and I. Takagi, Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281.  doi: 10.1215/S0012-7094-93-07004-4.  Google Scholar

[55]

W.-M. Ni and J. C. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math., 48 (1995), 731-768.  doi: 10.1002/cpa.3160480704.  Google Scholar

[56]

J. C. Wei, On the boundary spike layer solutions of singularly perturbed semilinear Neumann problem, J. Diff. Eqns., 134 (1997), 104-133.  doi: 10.1006/jdeq.1996.3218.  Google Scholar

[57]

J. C. Wei and S. S. Yan, Lazer-McKenna conjecture: The critical case, J. Funct. Anal., 244 (2007), 639-667.  doi: 10.1016/j.jfa.2006.11.002.  Google Scholar

[58]

J. C. Wei and J. Yang, Concentration on lines for a singularly perturbed Neumann problem in two- dimensional domains, Indiana Univ. Math. J., 56 (2007), 3025-3073.  doi: 10.1512/iumj.2007.56.3133.  Google Scholar

[1]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[2]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[3]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[4]

Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003

[5]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[6]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[7]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[8]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[9]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[10]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[11]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[12]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[13]

Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021017

[14]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[15]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[16]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[17]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[18]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[19]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[20]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (160)
  • HTML views (164)
  • Cited by (0)

Other articles
by authors

[Back to Top]