April  2020, 40(4): 2393-2419. doi: 10.3934/dcds.2020119

On the applicability of the poincaré–Birkhoff twist theorem to a class of planar periodic predator-prey models

1. 

Universidad Complutense de Madrid, Instituto de Matemática Interdisciplinar (IMI), Departamento de Análisis Matemático y Matemática Aplicada, Plaza de las Ciencias 3, 28040 Madrid, Spain

2. 

Università degli Studi di Udine, Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Via delle Scienze 2016, 33100 Udine, Italy

* Corresponding author: F. Zanolin

Received  July 2019 Revised  October 2019 Published  January 2020

Fund Project: This paper has been written under the auspices of the Ministry of Science, Technology and Universities of Spain, under Research Grant PGC2018-097104-B-100, and of the IMI of Complutense University. The second author, ORCID 0000-0003-1184-6231, has been also supported by contract CT42/18-CT43/18 of Complutense University of Madrid.

This paper studies the existence of subharmonics of arbitrary order in a generalized class of non-autonomous predator-prey systems of Volterra type with periodic coefficients. When the model is non-degenerate it is shown that the Poincaré–Birkhoff twist theorem can be applied to get the existence of subharmonics of arbitrary order. However, in the degenerate models, whether or not the twist theorem can be applied to get subharmonics of a given order might depend on the particular nodal behavior of the several weight function-coefficients involved in the setting of the model. Finally, in order to analyze how the subharmonics might be lost as the model degenerates, the exact point-wise behavior of the $ T $-periodic solutions of a non-degenerate model is ascertained as a perturbation parameter makes it degenerate.

Citation: Julián López-Gómez, Eduardo Muñoz-Hernández, Fabio Zanolin. On the applicability of the poincaré–Birkhoff twist theorem to a class of planar periodic predator-prey models. Discrete & Continuous Dynamical Systems - A, 2020, 40 (4) : 2393-2419. doi: 10.3934/dcds.2020119
References:
[1]

M. Begon, C. R. Townsend and J. L. Harper, Ecology: From Individuals to Ecosystems, 4th Edition, Blackwell Scientific Publications, United Kingdom, 2006. Google Scholar

[2]

A. Boscaggin, Subharmonic solutions of planar Hamiltonian systems: A rotation number approach, Adv. Nonlinear Stud., 11 (2011), 77-103.   Google Scholar

[3]

A. Boscaggin and F. Zanolin, Subharmonic solutions for nonlinear second order equations in presence of lower and upper solutions, Discrete & Continuous Dynamical Systems - A, 33 (2013), 89-110.  doi: 10.3934/dcds.2013.33.89.  Google Scholar

[4]

M. Braun, Differential Equations and Their Applications: An Introduction to Applied Mathematics, Third edition, Applied Mathematical Sciences, 15. Springer-Verlag, New York-Berlin, 1983.  Google Scholar

[5]

G. J. Butler and H. I. Freedman, Periodic solutions of a predator-prey system with periodic coefficients, Math Biosci., 55 (1981), 27-38.  doi: 10.1016/0025-5564(81)90011-0.  Google Scholar

[6]

A. CasalJ. C. Eilbeck and J. López-Gómez, Existence and uniqueness of coexistence states for a predator-prey model with diffusion, Diff. Int. Eqns., 7 (1994), 411-439.   Google Scholar

[7]

J. M. Cushing, Periodic time-dependent predator-prey systems, SIAM J. Appl. Math., 32 (1977), 82-95.  doi: 10.1137/0132006.  Google Scholar

[8]

F. Dalbono and C. Rebelo, Poincaré-Birkhoff fixed point theorem and periodic solutions of asymptotically linear planar hamiltonian systems, Rend. Sem. Mat. Univ. Pol. Torino, 60 (2003), 233-263.   Google Scholar

[9]

E. N. DancerJ. López-Gómez and R. Ortega, On the spectrum of some linear noncooperative weakly coupled elliptic systems, Diff. Int. Eqns., 8 (1995), 515-523.   Google Scholar

[10]

T. R. Ding and F. Zanolin, Harmonic solutions and subharmonic solutions for periodic Lotka-Volterra systems, Dynamical Systems (Tianjin, 1990/1991), Nankai Ser. Pure Appl. Math. Theoret. Phys., World Sci. Publ., River Edge, NJ, 4 (1993), 55-65.   Google Scholar

[11]

T. R. Ding and F. Zanolin, Periodic solutions and subharmonic solutions for a class of planar systems of Lotka-Volterra type, World Congress of Nonlinear Analysts '92, de Gruyter, Berlin, 1-4 (1996), 395-406.   Google Scholar

[12]

W. Y. Ding, Fixed points of twist mappings and periodic solutions of ordinary differential equations, Acta Math. Sinica, 25 (1982), 227-235.   Google Scholar

[13]

T. Dondè and F. Zanolin, Multiple periodic solutions for one-sided sublinear systems: A refinement of the Poincaré-Birkhoff approach, preprint, (2019), arXiv: 1901.09406 [math.DS]. Google Scholar

[14]

A. Fonda, Playing Around Resonance. An Invitation to the Search of Periodic Solutions for Second Order Ordinary Differential Equations, Birkhäuser Advanced Texts, Birkhäuser/Springer, Cham, 2016. doi: 10.1007/978-3-319-47090-0.  Google Scholar

[15]

A. FondaM. Sabatini and F. Zanolin, Periodic solutions of perturbed hamiltonian systems in the plane by the use of Poincaré-Birkhoff theorem, Topol. Meth. Nonlin. Anal., 40 (2012), 29-52.   Google Scholar

[16]

A. Fonda and R. Toader, Subharmonic solutions of Hamiltonian systems displaying some kind of sublinear growth, Adv. Nonlinear Anal., 8 (2019), 583-602.  doi: 10.1515/anona-2017-0040.  Google Scholar

[17]

A. Fonda and A. J. Ureña, A higher dimensional Poincaré-Birkhoff theorem for Hamiltonian flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 679-698.  doi: 10.1016/j.anihpc.2016.04.002.  Google Scholar

[18]

A. R. Hausrath and R. F. Manásevich, Periodic solutions of a periodically perturbed Lotka-Volterra equation using the Poincaré-Birkhoff theorem, J. Math. Anal. Appl., 157 (1991), 1-9.  doi: 10.1016/0022-247X(91)90132-J.  Google Scholar

[19]

J. López-Gómez, A bridge between operator theory and mathematical biology, Operator Theory and its Applications, Fields Inst. Comm. Amer. Math. Soc., Providence, RI, 25 (2000), 383-397.   Google Scholar

[20]

J. López-Gómez and E. Muñoz-Hernández, Global structure of subharmonics in a class of periodic predator-prey models, Nonlinearity, 33 (2020), 34-71.   Google Scholar

[21]

J. López-GómezR. Ortega and A. Tineo, The periodic predator-prey Lotka-Volterra model, Adv. Diff. Eqns., 1 (1996), 403-423.   Google Scholar

[22]

J. López-Gómez and R. M. Pardo, The existence and the uniqueness for the predator-prey model with diffusion, Diff. Int. Eqns., 6 (1993), 1025-1031.   Google Scholar

[23]

J. López-Gómez and R. M. Pardo, Invertibility of linear noncooperative elliptic systems, Nonlin. Anal., 31 (1998), 687-699.  doi: 10.1016/S0362-546X(97)00640-8.  Google Scholar

[24]

A. MargheriC. Rebelo and F. Zanolin, Maslov index, Poincaré-Birkhoff theorem and periodic solutions of asymptotically linear planar Hamiltonian systems, J. Differential Equations, 183 (2002), 342-367.  doi: 10.1006/jdeq.2001.4122.  Google Scholar

[25]

J. D. Murray, Mathematical Biology. I. An Introduction, Third edition, Interdisciplinary Applied Mathematics, 17. Springer-Verlag, New York, 2002.  Google Scholar

[26]

C. Rebelo, A note on the Poincaré-Birkhoff fixed point theorem and periodic solutions of planar systems, Nonlin. Anal., 29 (1997), 291-311.  doi: 10.1016/S0362-546X(96)00065-X.  Google Scholar

show all references

References:
[1]

M. Begon, C. R. Townsend and J. L. Harper, Ecology: From Individuals to Ecosystems, 4th Edition, Blackwell Scientific Publications, United Kingdom, 2006. Google Scholar

[2]

A. Boscaggin, Subharmonic solutions of planar Hamiltonian systems: A rotation number approach, Adv. Nonlinear Stud., 11 (2011), 77-103.   Google Scholar

[3]

A. Boscaggin and F. Zanolin, Subharmonic solutions for nonlinear second order equations in presence of lower and upper solutions, Discrete & Continuous Dynamical Systems - A, 33 (2013), 89-110.  doi: 10.3934/dcds.2013.33.89.  Google Scholar

[4]

M. Braun, Differential Equations and Their Applications: An Introduction to Applied Mathematics, Third edition, Applied Mathematical Sciences, 15. Springer-Verlag, New York-Berlin, 1983.  Google Scholar

[5]

G. J. Butler and H. I. Freedman, Periodic solutions of a predator-prey system with periodic coefficients, Math Biosci., 55 (1981), 27-38.  doi: 10.1016/0025-5564(81)90011-0.  Google Scholar

[6]

A. CasalJ. C. Eilbeck and J. López-Gómez, Existence and uniqueness of coexistence states for a predator-prey model with diffusion, Diff. Int. Eqns., 7 (1994), 411-439.   Google Scholar

[7]

J. M. Cushing, Periodic time-dependent predator-prey systems, SIAM J. Appl. Math., 32 (1977), 82-95.  doi: 10.1137/0132006.  Google Scholar

[8]

F. Dalbono and C. Rebelo, Poincaré-Birkhoff fixed point theorem and periodic solutions of asymptotically linear planar hamiltonian systems, Rend. Sem. Mat. Univ. Pol. Torino, 60 (2003), 233-263.   Google Scholar

[9]

E. N. DancerJ. López-Gómez and R. Ortega, On the spectrum of some linear noncooperative weakly coupled elliptic systems, Diff. Int. Eqns., 8 (1995), 515-523.   Google Scholar

[10]

T. R. Ding and F. Zanolin, Harmonic solutions and subharmonic solutions for periodic Lotka-Volterra systems, Dynamical Systems (Tianjin, 1990/1991), Nankai Ser. Pure Appl. Math. Theoret. Phys., World Sci. Publ., River Edge, NJ, 4 (1993), 55-65.   Google Scholar

[11]

T. R. Ding and F. Zanolin, Periodic solutions and subharmonic solutions for a class of planar systems of Lotka-Volterra type, World Congress of Nonlinear Analysts '92, de Gruyter, Berlin, 1-4 (1996), 395-406.   Google Scholar

[12]

W. Y. Ding, Fixed points of twist mappings and periodic solutions of ordinary differential equations, Acta Math. Sinica, 25 (1982), 227-235.   Google Scholar

[13]

T. Dondè and F. Zanolin, Multiple periodic solutions for one-sided sublinear systems: A refinement of the Poincaré-Birkhoff approach, preprint, (2019), arXiv: 1901.09406 [math.DS]. Google Scholar

[14]

A. Fonda, Playing Around Resonance. An Invitation to the Search of Periodic Solutions for Second Order Ordinary Differential Equations, Birkhäuser Advanced Texts, Birkhäuser/Springer, Cham, 2016. doi: 10.1007/978-3-319-47090-0.  Google Scholar

[15]

A. FondaM. Sabatini and F. Zanolin, Periodic solutions of perturbed hamiltonian systems in the plane by the use of Poincaré-Birkhoff theorem, Topol. Meth. Nonlin. Anal., 40 (2012), 29-52.   Google Scholar

[16]

A. Fonda and R. Toader, Subharmonic solutions of Hamiltonian systems displaying some kind of sublinear growth, Adv. Nonlinear Anal., 8 (2019), 583-602.  doi: 10.1515/anona-2017-0040.  Google Scholar

[17]

A. Fonda and A. J. Ureña, A higher dimensional Poincaré-Birkhoff theorem for Hamiltonian flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 679-698.  doi: 10.1016/j.anihpc.2016.04.002.  Google Scholar

[18]

A. R. Hausrath and R. F. Manásevich, Periodic solutions of a periodically perturbed Lotka-Volterra equation using the Poincaré-Birkhoff theorem, J. Math. Anal. Appl., 157 (1991), 1-9.  doi: 10.1016/0022-247X(91)90132-J.  Google Scholar

[19]

J. López-Gómez, A bridge between operator theory and mathematical biology, Operator Theory and its Applications, Fields Inst. Comm. Amer. Math. Soc., Providence, RI, 25 (2000), 383-397.   Google Scholar

[20]

J. López-Gómez and E. Muñoz-Hernández, Global structure of subharmonics in a class of periodic predator-prey models, Nonlinearity, 33 (2020), 34-71.   Google Scholar

[21]

J. López-GómezR. Ortega and A. Tineo, The periodic predator-prey Lotka-Volterra model, Adv. Diff. Eqns., 1 (1996), 403-423.   Google Scholar

[22]

J. López-Gómez and R. M. Pardo, The existence and the uniqueness for the predator-prey model with diffusion, Diff. Int. Eqns., 6 (1993), 1025-1031.   Google Scholar

[23]

J. López-Gómez and R. M. Pardo, Invertibility of linear noncooperative elliptic systems, Nonlin. Anal., 31 (1998), 687-699.  doi: 10.1016/S0362-546X(97)00640-8.  Google Scholar

[24]

A. MargheriC. Rebelo and F. Zanolin, Maslov index, Poincaré-Birkhoff theorem and periodic solutions of asymptotically linear planar Hamiltonian systems, J. Differential Equations, 183 (2002), 342-367.  doi: 10.1006/jdeq.2001.4122.  Google Scholar

[25]

J. D. Murray, Mathematical Biology. I. An Introduction, Third edition, Interdisciplinary Applied Mathematics, 17. Springer-Verlag, New York, 2002.  Google Scholar

[26]

C. Rebelo, A note on the Poincaré-Birkhoff fixed point theorem and periodic solutions of planar systems, Nonlin. Anal., 29 (1997), 291-311.  doi: 10.1016/S0362-546X(96)00065-X.  Google Scholar

Figure 1.  A genuine case when $ \alpha\beta = 0 $ in $ {\mathbb R} $
Figure 2.  Two weights such that $ \alpha\beta \gneq 0 $
Figure 3.  The weight functions $ \alpha_ \varepsilon(t) $ and $ \beta(t) $
Figure 4.  Subharmonics of (17) under condition (21). The figure represents an ideal global bifurcation diagram for subharmonics with the parameter $ A = B $ (in the abscissa) versus the value of the initial point $ x = u_0 = v_0 $ of the periodic solution (in the ordinate). Each bifurcation curve is labelled with the period of the corresponding subharmonic solution. For a detailed analysis of the real bifurcation diagrams, we refer to [20]
Figure 5.  Behavior of $ u(t, \varepsilon_n) $ and $ v(t, \varepsilon_n) $ in Case 1.A for small $ n $
Figure 6.  Behavior of $ u(t, \varepsilon_n) $ and $ v(t, \varepsilon_n) $ in Case 1.A for large $ n $. Notice that $ v $ is constant on $ [0,T/2] $ while, on the same interval, $ u $ is near to a constant for large $ n $
Figure 7.  Admissible $ u(t, \varepsilon_n) $ and $ v(t, \varepsilon_n) $ in Subcase 1.B for large $ n $. As in Figure 6, $ v $ is constant on $ [0,T/2] $ while, on the same interval, $ u $ is near to a constant for large $ n $
Figure 8.  Admissible $ u(t, \varepsilon_n) $ and $ v(t, \varepsilon_n) $ in Case 2 for large $ n $
Figure 9.  Admissible $ u(t, \varepsilon_n) $ and $ v(t, \varepsilon_n) $ in Case 2 for large $ n $
Figure 10.  Admissible components with $ u_0( \varepsilon_n)>1 $ for sufficiently large $ n\geq 1 $
Figure 11.  Admissible components in the Subcase 4.B for sufficiently large $ n $
[1]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[2]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[3]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[4]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[5]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[6]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[7]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[8]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[9]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[10]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[11]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[12]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[13]

Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104

[14]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[15]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[16]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[17]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[18]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[19]

Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021018

[20]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (233)
  • HTML views (86)
  • Cited by (0)

[Back to Top]