• Previous Article
    Supercritical elliptic problems on the round sphere and nodal solutions to the Yamabe problem in projective spaces
  • DCDS Home
  • This Issue
  • Next Article
    Equicontinuity, transitivity and sensitivity: The Auslander-Yorke dichotomy revisited
April  2020, 40(4): 2475-2493. doi: 10.3934/dcds.2020122

Persistence properties and wave-breaking criteria for a generalized two-component rotational b-family system

1. 

School of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640, China

2. 

School of Mathematical and Statistical Science, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA

*Corresponding author: Zhijun Qiao

Received  July 2019 Revised  November 2019 Published  January 2020

In this paper, we investigate a generalized two-component rotational b-family system arising in the rotating fluid with the effect of the Coriolis force. First, we study the persistence properties of the system in weighted $ L^p $-spaces, for a large class of moderate weights. Secondly, in order to overcome the difficulty arising from higher order nonlinearity and no conservation law, we take the advantage of the specially intrinsic structure of the system and make use of commutator estimate, and then derive two blow-up results for the strong solutions to the system.

Citation: Meiling Yang, Yongsheng Li, Zhijun Qiao. Persistence properties and wave-breaking criteria for a generalized two-component rotational b-family system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (4) : 2475-2493. doi: 10.3934/dcds.2020122
References:
[1]

A. Aldroubi and K. Gröchenig, Nonuniform sampling and reconstruction in shift-invariant spaces, SIAM Rev., 43 (2001), 585-620.  doi: 10.1137/S0036144501386986.  Google Scholar

[2]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, 343. Springer, Heidelberg, 2011. doi: 10.1007%2F978-3-642-16830-7.  Google Scholar

[3]

L. Brandolese, Breakdown for the Camassa-Holm equation using decay criteria and persistence in weighted spaces, Int. Math. Res. Not. IMRN, (2012), 5161–5181. doi: 10.1093/imrn/rnr218.  Google Scholar

[4]

J.-Y. Chemin, Localization in fourier space and Navier-Stokes system, Phase Space Analysis of Partial Differential Equations, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 1 (2004), 53-135.   Google Scholar

[5]

R. M. Chen and Y. Liu, Wave breaking and global existence for a generalized two-component Camassa-Holm system, Int. Math. Res. Not. IMRN, (2011), 1381–1416. doi: 10.1093/imrn/rnq118.  Google Scholar

[6]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Sci. (4), 26 (1998), 303-328.   Google Scholar

[7]

A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504.  doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5.  Google Scholar

[8]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.  doi: 10.1007/BF02392586.  Google Scholar

[9]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.  doi: 10.5802/aif.1757.  Google Scholar

[10]

A. Constantin and R. I. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132.  doi: 10.1016/j.physleta.2008.10.050.  Google Scholar

[11]

A. Constantin and R. I. Ivanov, Equatorial wave-current interactions, Comm. Math. Phys., 370 (2019), 1-48.  doi: 10.1007/s00220-019-03483-8.  Google Scholar

[12]

A. Constantin and R. S. Johnson, On the nonlinear, three-dimensional structure of equatorial oceanic flows, J. Phys. Oceanogr., 49 (2019), 2029-2042.  doi: 10.1175/JPO-D-19-0079.1.  Google Scholar

[13]

A. Constantin and R. S. Johnson, Ekman-type solutions for shallow-water flows on a rotating sphere: A new perspective on a classical problem, Phys. Fluids, 31 (2019), 021401. doi: 10.1063/1.5083088.  Google Scholar

[14]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61.  doi: 10.1007/s002200050801.  Google Scholar

[15]

A. Constantin, Finite propagation speed for the Camassa-Holm equation, J. Math. Phys., 46 (2005), 023506, 4 pp. doi: 10.1063/1.1845603.  Google Scholar

[16]

R. Danchin, A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988.   Google Scholar

[17]

R. Danchin, A note on well-posedness for Camassa-Holm equation, J. Differential Equations, 192 (2003), 429-444.  doi: 10.1016/S0022-0396(03)00096-2.  Google Scholar

[18]

J. EscherO. Lechttenfeld and Z. Y. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, Discrete Contin. Dyn. Syst., 19 (2007), 493-513.  doi: 10.3934/dcds.2007.19.493.  Google Scholar

[19]

L. L. FanH. J. Gao and Y. Liu, On the rotation-two-component Camassa-Holm system modelling the equatorial water waves, Adv. Math., 291 (2016), 59-89.  doi: 10.1016/j.aim.2015.11.049.  Google Scholar

[20]

H. G. Feichtinger, Gewichtsfunktionen auf lokalkompakten Gruppen, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 188 (1979), 451–471.  Google Scholar

[21]

B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/82), 47-66.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[22]

K. Gröchenig, Weight functions in time-frequency analysis, Pseudo-Differential Operators: Partial Differential Equations and Time-Frequency Analysis, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 52 (2007), 343-366.   Google Scholar

[23]

C. X. Guan and Z. Y. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system, J. Differential Equations, 248 (2010), 2003-2014.  doi: 10.1016/j.jde.2009.08.002.  Google Scholar

[24]

G. L. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system, Math. Z., 268 (2011), 45-66.  doi: 10.1007/s00209-009-0660-2.  Google Scholar

[25]

G. L. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system, J. Funct. Anal., 258 (2010), 4251-4278.  doi: 10.1016/j.jfa.2010.02.008.  Google Scholar

[26]

Y. W. HanF. Guo and H. J. Gao, On solitary waves and wave-breaking phenomena for a generalized two-component integrable Dullin-Gottwald-Holm system, J. Nonlinear Sci., 23 (2013), 617-656.  doi: 10.1007/s00332-012-9163-0.  Google Scholar

[27]

D. Henry, Compactly supported solutions of the Camassa-Holm equation, J. Nonlinear Math. Phys., 12 (2005), 342-347.  doi: 10.2991/jnmp.2005.12.3.3.  Google Scholar

[28]

R. Ivanov, Two-component integrable systems modelling shallow water waves: The constant vorticity case, Wave Motion, 46 (2009), 389-396.  doi: 10.1016/j.wavemoti.2009.06.012.  Google Scholar

[29]

R.-Q. Jia, Shift-invariant spaces and linear operator equations, Israel J. Math., 103 (1998), 259-288.  doi: 10.1007/BF02762276.  Google Scholar

[30]

T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, Spectral Theory and Differential Equations, Lecture Notes in Math., Springer, Berlin, 448 (1975), 25-70.   Google Scholar

[31]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.  doi: 10.1002/cpa.3160410704.  Google Scholar

[32]

W. S. KesslerG. C. Johnson and D. W. Moore, Sverdrup and nonlinear dynamics of the Pacific equatorial currents, J. Phys. Oceanogr., 33 (2003), 994-1008.  doi: 10.1175/1520-0485(2003)033<0994:SANDOT>2.0.CO;2.  Google Scholar

[33]

B. Moon, On the wave-breaking phenomena and global existence for the periodic rotation-two-component Camassa-Holm system, J. Math. Anal. Appl., 451 (2017), 84-101.  doi: 10.1016/j.jmaa.2017.01.075.  Google Scholar

[34]

Z. J. Qiao, The Camassa-Holm hierarchy, $N$-dimensional integrable systems and algebro-geometric solution on a symplectic submanifold, Comm. Math. Phys., 239 (2003), 309-341.  doi: 10.1007/s00220-003-0880-y.  Google Scholar

[35]

G. Rodríguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46 (2001), 309-327.  doi: 10.1016/S0362-546X(01)00791-X.  Google Scholar

[36]

Z. P. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.  doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.  Google Scholar

[37]

M. Zhu and Y. Wang, Blow-up of solutions to the rotation b-family system modeling equatorial water waves, Electron. J. Differential Equations, 2018 (2018), 23 pp.  Google Scholar

show all references

References:
[1]

A. Aldroubi and K. Gröchenig, Nonuniform sampling and reconstruction in shift-invariant spaces, SIAM Rev., 43 (2001), 585-620.  doi: 10.1137/S0036144501386986.  Google Scholar

[2]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, 343. Springer, Heidelberg, 2011. doi: 10.1007%2F978-3-642-16830-7.  Google Scholar

[3]

L. Brandolese, Breakdown for the Camassa-Holm equation using decay criteria and persistence in weighted spaces, Int. Math. Res. Not. IMRN, (2012), 5161–5181. doi: 10.1093/imrn/rnr218.  Google Scholar

[4]

J.-Y. Chemin, Localization in fourier space and Navier-Stokes system, Phase Space Analysis of Partial Differential Equations, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 1 (2004), 53-135.   Google Scholar

[5]

R. M. Chen and Y. Liu, Wave breaking and global existence for a generalized two-component Camassa-Holm system, Int. Math. Res. Not. IMRN, (2011), 1381–1416. doi: 10.1093/imrn/rnq118.  Google Scholar

[6]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Sci. (4), 26 (1998), 303-328.   Google Scholar

[7]

A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504.  doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5.  Google Scholar

[8]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.  doi: 10.1007/BF02392586.  Google Scholar

[9]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.  doi: 10.5802/aif.1757.  Google Scholar

[10]

A. Constantin and R. I. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132.  doi: 10.1016/j.physleta.2008.10.050.  Google Scholar

[11]

A. Constantin and R. I. Ivanov, Equatorial wave-current interactions, Comm. Math. Phys., 370 (2019), 1-48.  doi: 10.1007/s00220-019-03483-8.  Google Scholar

[12]

A. Constantin and R. S. Johnson, On the nonlinear, three-dimensional structure of equatorial oceanic flows, J. Phys. Oceanogr., 49 (2019), 2029-2042.  doi: 10.1175/JPO-D-19-0079.1.  Google Scholar

[13]

A. Constantin and R. S. Johnson, Ekman-type solutions for shallow-water flows on a rotating sphere: A new perspective on a classical problem, Phys. Fluids, 31 (2019), 021401. doi: 10.1063/1.5083088.  Google Scholar

[14]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61.  doi: 10.1007/s002200050801.  Google Scholar

[15]

A. Constantin, Finite propagation speed for the Camassa-Holm equation, J. Math. Phys., 46 (2005), 023506, 4 pp. doi: 10.1063/1.1845603.  Google Scholar

[16]

R. Danchin, A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988.   Google Scholar

[17]

R. Danchin, A note on well-posedness for Camassa-Holm equation, J. Differential Equations, 192 (2003), 429-444.  doi: 10.1016/S0022-0396(03)00096-2.  Google Scholar

[18]

J. EscherO. Lechttenfeld and Z. Y. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, Discrete Contin. Dyn. Syst., 19 (2007), 493-513.  doi: 10.3934/dcds.2007.19.493.  Google Scholar

[19]

L. L. FanH. J. Gao and Y. Liu, On the rotation-two-component Camassa-Holm system modelling the equatorial water waves, Adv. Math., 291 (2016), 59-89.  doi: 10.1016/j.aim.2015.11.049.  Google Scholar

[20]

H. G. Feichtinger, Gewichtsfunktionen auf lokalkompakten Gruppen, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 188 (1979), 451–471.  Google Scholar

[21]

B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/82), 47-66.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[22]

K. Gröchenig, Weight functions in time-frequency analysis, Pseudo-Differential Operators: Partial Differential Equations and Time-Frequency Analysis, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 52 (2007), 343-366.   Google Scholar

[23]

C. X. Guan and Z. Y. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system, J. Differential Equations, 248 (2010), 2003-2014.  doi: 10.1016/j.jde.2009.08.002.  Google Scholar

[24]

G. L. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system, Math. Z., 268 (2011), 45-66.  doi: 10.1007/s00209-009-0660-2.  Google Scholar

[25]

G. L. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system, J. Funct. Anal., 258 (2010), 4251-4278.  doi: 10.1016/j.jfa.2010.02.008.  Google Scholar

[26]

Y. W. HanF. Guo and H. J. Gao, On solitary waves and wave-breaking phenomena for a generalized two-component integrable Dullin-Gottwald-Holm system, J. Nonlinear Sci., 23 (2013), 617-656.  doi: 10.1007/s00332-012-9163-0.  Google Scholar

[27]

D. Henry, Compactly supported solutions of the Camassa-Holm equation, J. Nonlinear Math. Phys., 12 (2005), 342-347.  doi: 10.2991/jnmp.2005.12.3.3.  Google Scholar

[28]

R. Ivanov, Two-component integrable systems modelling shallow water waves: The constant vorticity case, Wave Motion, 46 (2009), 389-396.  doi: 10.1016/j.wavemoti.2009.06.012.  Google Scholar

[29]

R.-Q. Jia, Shift-invariant spaces and linear operator equations, Israel J. Math., 103 (1998), 259-288.  doi: 10.1007/BF02762276.  Google Scholar

[30]

T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, Spectral Theory and Differential Equations, Lecture Notes in Math., Springer, Berlin, 448 (1975), 25-70.   Google Scholar

[31]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.  doi: 10.1002/cpa.3160410704.  Google Scholar

[32]

W. S. KesslerG. C. Johnson and D. W. Moore, Sverdrup and nonlinear dynamics of the Pacific equatorial currents, J. Phys. Oceanogr., 33 (2003), 994-1008.  doi: 10.1175/1520-0485(2003)033<0994:SANDOT>2.0.CO;2.  Google Scholar

[33]

B. Moon, On the wave-breaking phenomena and global existence for the periodic rotation-two-component Camassa-Holm system, J. Math. Anal. Appl., 451 (2017), 84-101.  doi: 10.1016/j.jmaa.2017.01.075.  Google Scholar

[34]

Z. J. Qiao, The Camassa-Holm hierarchy, $N$-dimensional integrable systems and algebro-geometric solution on a symplectic submanifold, Comm. Math. Phys., 239 (2003), 309-341.  doi: 10.1007/s00220-003-0880-y.  Google Scholar

[35]

G. Rodríguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46 (2001), 309-327.  doi: 10.1016/S0362-546X(01)00791-X.  Google Scholar

[36]

Z. P. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.  doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.  Google Scholar

[37]

M. Zhu and Y. Wang, Blow-up of solutions to the rotation b-family system modeling equatorial water waves, Electron. J. Differential Equations, 2018 (2018), 23 pp.  Google Scholar

[1]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[2]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[3]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[4]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[5]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[6]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[7]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[8]

Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021067

[9]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[10]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[11]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[12]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[13]

M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202

[14]

Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61

[15]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[16]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[17]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[18]

Ethan Akin, Julia Saccamano. Generalized intransitive dice II: Partition constructions. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021005

[19]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[20]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (158)
  • HTML views (126)
  • Cited by (0)

Other articles
by authors

[Back to Top]