# American Institute of Mathematical Sciences

June  2020, 40(6): 3253-3290. doi: 10.3934/dcds.2020124

## Boundary spike of the singular limit of an energy minimizing problem

 Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA 15260, USA

Received  February 2019 Revised  September 2019 Published  February 2020

Fund Project: This research is partially supported by the National Science Foundation grants DMS-0504691 and DMS-1200599

In this paper, we consider the singular limit of an energy minimizing problem which is a semi-limit of a singular elliptic equation modeling steady states of thin film equation with both Van der Waals force and Born repulsion force. We show that the singular limit of energy minimizers is a Dirac mass located on the boundary point with the maximum curvature.

Citation: Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124
##### References:

show all references

##### References:
 [1] Marina Chugunova, Roman M. Taranets. New dissipated energy for the unstable thin film equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 613-624. doi: 10.3934/cpaa.2011.10.613 [2] Sergey Degtyarev. Classical solvability of the multidimensional free boundary problem for the thin film equation with quadratic mobility in the case of partial wetting. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3625-3699. doi: 10.3934/dcds.2017156 [3] Huiqiang Jiang. Energy minimizers of a thin film equation with born repulsion force. Communications on Pure & Applied Analysis, 2011, 10 (2) : 803-815. doi: 10.3934/cpaa.2011.10.803 [4] Eric A. Carlen, Süleyman Ulusoy. Localization, smoothness, and convergence to equilibrium for a thin film equation. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4537-4553. doi: 10.3934/dcds.2014.34.4537 [5] Richard S. Laugesen. New dissipated energies for the thin fluid film equation. Communications on Pure & Applied Analysis, 2005, 4 (3) : 613-634. doi: 10.3934/cpaa.2005.4.613 [6] Changchun Liu, Jingxue Yin, Juan Zhou. Existence of weak solutions for a generalized thin film equation. Communications on Pure & Applied Analysis, 2007, 6 (2) : 465-480. doi: 10.3934/cpaa.2007.6.465 [7] Jian-Guo Liu, Jinhuan Wang. Global existence for a thin film equation with subcritical mass. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1461-1492. doi: 10.3934/dcdsb.2017070 [8] Daniel Ginsberg, Gideon Simpson. Analytical and numerical results on the positivity of steady state solutions of a thin film equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1305-1321. doi: 10.3934/dcdsb.2013.18.1305 [9] Jian Zhai, Zhihui Cai. $\Gamma$-convergence with Dirichlet boundary condition and Landau-Lifshitz functional for thin film. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1071-1085. doi: 10.3934/dcdsb.2009.11.1071 [10] Lihua Min, Xiaoping Yang. Finite speed of propagation and algebraic time decay of solutions to a generalized thin film equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 543-566. doi: 10.3934/cpaa.2014.13.543 [11] Zongming Guo, Yunting Yu. Boundary value problems for a semilinear elliptic equation with singular nonlinearity. Communications on Pure & Applied Analysis, 2016, 15 (2) : 399-412. doi: 10.3934/cpaa.2016.15.399 [12] Cheng Wang, Xiaoming Wang, Steven M. Wise. Unconditionally stable schemes for equations of thin film epitaxy. Discrete & Continuous Dynamical Systems, 2010, 28 (1) : 405-423. doi: 10.3934/dcds.2010.28.405 [13] M. Ben Ayed, K. El Mehdi, M. Hammami. Nonexistence of bounded energy solutions for a fourth order equation on thin annuli. Communications on Pure & Applied Analysis, 2004, 3 (4) : 557-580. doi: 10.3934/cpaa.2004.3.557 [14] P. Álvarez-Caudevilla, J. D. Evans, V. A. Galaktionov. The Cauchy problem for a tenth-order thin film equation II. Oscillatory source-type and fundamental similarity solutions. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 807-827. doi: 10.3934/dcds.2015.35.807 [15] Anna Lisa Amadori. Contour enhancement via a singular free boundary problem. Conference Publications, 2007, 2007 (Special) : 44-53. doi: 10.3934/proc.2007.2007.44 [16] José M. Arrieta, Manuel Villanueva-Pesqueira. Elliptic and parabolic problems in thin domains with doubly weak oscillatory boundary. Communications on Pure & Applied Analysis, 2020, 19 (4) : 1891-1914. doi: 10.3934/cpaa.2020083 [17] Aram L. Karakhanyan. Lipschitz continuity of free boundary in the continuous casting problem with divergence form elliptic equation. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 261-277. doi: 10.3934/dcds.2016.36.261 [18] Patricia Bauman, Andrea C. Rubiano. Energy-minimizing nematic elastomers. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 259-282. doi: 10.3934/dcdss.2015.8.259 [19] Antonin Chambolle, Francesco Doveri. Minimizing movements of the Mumford and Shah energy. Discrete & Continuous Dynamical Systems, 1997, 3 (2) : 153-174. doi: 10.3934/dcds.1997.3.153 [20] Jesús Ildefonso Díaz. On the free boundary for quenching type parabolic problems via local energy methods. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1799-1814. doi: 10.3934/cpaa.2014.13.1799