-
Previous Article
Sectional symmetry of solutions of elliptic systems in cylindrical domains
- DCDS Home
- This Issue
-
Next Article
Boundary spike of the singular limit of an energy minimizing problem
On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory
a. | Department of Mathematics, National Central University, Chung-Li 32001, Taiwan |
b. | Department of Mathematics, National Changhua University of Education, Changhua 500, Taiwan |
In this paper, by constructing a family of approximation solutions and applying a specific version of the Implicit Function Theorem (please see, e.g. [
References:
[1] |
W. Ao, C.-S. Lin and J. Wei, On non-topological solutions of the A2 and B2 Chern-Simons system, Mem. Amer. Math. Soc., 239 (2016), 1132. |
[2] |
D. Chae and O. Yu. Imanuvilov, The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory, Comm. Math. Phys., 215 (2000), 119–142.
doi: 10.1007/s002200000302. |
[3] |
D. Chae, On the elliptic system arising from a self-gravitating Born-Infeld Abelian Higgs theory, Nonlinearity, 18 (2005), 1823–1833. |
[4] |
W. Chen and C. Li, Qualitative properties of solutions to some nonlinear elliptic equations in $ {\mathbb R}^2$, Duke Math. J., 71 (1993), 427–439.
doi: 10.1215/S0012-7094-93-07117-7. |
[5] |
K.-S. Cheng and C.-S. Lin, On the conformal Gaussian curvature equation in $ {\mathbb R}^2$, J. Diff. Eqns, 146 (1998), 226–250.
doi: 10.1006/jdeq.1998.3424. |
[6] |
J.-L. Chern and S.-G. Yang,
Evaluating solutions on an elliptic problem in a gravitational gauge field theory, Journal of Functional Analysis, 265 (2013), 1240-1263.
|
[7] |
J.-L. Chern and S.-G. Yang, A survey of solutions in a gravitational Born-Infeld theory, Journal of Mathematical Physics, 55 (2014), 031501, 24pp.
doi: 10.1063/1.4867618. |
[8] |
K. Choe, Uniqueness of the topological multivortex solution in the self-dual in the Chern-Simons Theorem, J. Math. Phys, 46 (2005), 012305. |
[9] |
K. Choe, N. Kim and C.-S. Lin, Existence of self-dual non-topological solutions in the Chern-Simons Higgs model, Ann.Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 28 (2011), 837–852.
doi: 10.1016/j.anihpc.2011.06.003. |
[10] |
K. Choe, N. Kim and C.-S. Lin,
Self-dual symmetric nontopological solutions in the $SU(3)$ model in $ {\mathbb R}^2$, Commun. Math. Phys., 33 (2015), 1-37.
|
[11] |
K. Choe, N. Kim and C.-S. Lin, Existence of mixed type solutions in the $SU(3)$ Chern-Simons theory in $ {\mathbb R}^2$, Calc. Var. Partial Differential Equations, 56 (2017), Art. 17, 30 pp.
doi: 10.1007/s00526-017-1119-7. |
[12] |
K. Choe, N. Kim, Y. Lin and C.-S. Lin,
Existence of mixed type solutions in the Chern-Simons gauge theory of rank two in $ {\mathbb R}^2$, Journal of Functional Analysis, 273 (2017), 1734-1761.
doi: 10.1016/j.jfa.2017.05.012. |
[13] |
A. Comtet and G. W. Gibbons, Bogomol'nyi bounds for cosmic strings, Nucl. Phys. B, 299 (1988), 719–733.
doi: 10.1016/0550-3213(88)90370-7. |
[14] |
A. V. Fursikov and O. Yu. Imanuvilov, Local exact boundary controllability of the boussinesq equation, SIAM Journal of Control and Optimization, 36 (1998), 391–421. |
[15] |
Z. Hlousek and and D. Spector, Bogomol'nyi explained, Nucl. Phys. B, 397 (1993), 173. |
[16] |
G. Huang and C.-S. Lin,
The existence of non-topological solutions for a skew-symmetric Chern-Simons system, Indiana Univ. Math. J., 65 (2016), 453-491.
doi: 10.1512/iumj.2016.65.5769. |
[17] |
B. Linet, A vortex-line model for a system of cosmic strings in equilibrium, Gen. Relativ. Gravit., 20 (1988), 451–456.
doi: 10.1007/BF00758120. |
[18] |
L. Nirenberg, Topics in Nonlinear Analysis, Courant Lecture Notes in Math., 6, American Mathematical Society, 2001. |
[19] |
D. Tong and K. Wong, Vortices and Impurities, J. High Energy Phys., 1401 (2014), 090. |
[20] |
Y. Yang, Cosmic strings in a product Abelian gauge field theory, Nucl. Phys. B, 885 (2014), 25–33.
doi: 10.1016/j.nuclphysb.2014.05.013. |
[21] |
Y. Yang, Prescribing zeros and poles on a compact Riemann surface for a gravitationally coupled Abelian gauge field theory, Comm. Math. Phys., 249 (2004), 579–609. |
show all references
References:
[1] |
W. Ao, C.-S. Lin and J. Wei, On non-topological solutions of the A2 and B2 Chern-Simons system, Mem. Amer. Math. Soc., 239 (2016), 1132. |
[2] |
D. Chae and O. Yu. Imanuvilov, The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory, Comm. Math. Phys., 215 (2000), 119–142.
doi: 10.1007/s002200000302. |
[3] |
D. Chae, On the elliptic system arising from a self-gravitating Born-Infeld Abelian Higgs theory, Nonlinearity, 18 (2005), 1823–1833. |
[4] |
W. Chen and C. Li, Qualitative properties of solutions to some nonlinear elliptic equations in $ {\mathbb R}^2$, Duke Math. J., 71 (1993), 427–439.
doi: 10.1215/S0012-7094-93-07117-7. |
[5] |
K.-S. Cheng and C.-S. Lin, On the conformal Gaussian curvature equation in $ {\mathbb R}^2$, J. Diff. Eqns, 146 (1998), 226–250.
doi: 10.1006/jdeq.1998.3424. |
[6] |
J.-L. Chern and S.-G. Yang,
Evaluating solutions on an elliptic problem in a gravitational gauge field theory, Journal of Functional Analysis, 265 (2013), 1240-1263.
|
[7] |
J.-L. Chern and S.-G. Yang, A survey of solutions in a gravitational Born-Infeld theory, Journal of Mathematical Physics, 55 (2014), 031501, 24pp.
doi: 10.1063/1.4867618. |
[8] |
K. Choe, Uniqueness of the topological multivortex solution in the self-dual in the Chern-Simons Theorem, J. Math. Phys, 46 (2005), 012305. |
[9] |
K. Choe, N. Kim and C.-S. Lin, Existence of self-dual non-topological solutions in the Chern-Simons Higgs model, Ann.Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 28 (2011), 837–852.
doi: 10.1016/j.anihpc.2011.06.003. |
[10] |
K. Choe, N. Kim and C.-S. Lin,
Self-dual symmetric nontopological solutions in the $SU(3)$ model in $ {\mathbb R}^2$, Commun. Math. Phys., 33 (2015), 1-37.
|
[11] |
K. Choe, N. Kim and C.-S. Lin, Existence of mixed type solutions in the $SU(3)$ Chern-Simons theory in $ {\mathbb R}^2$, Calc. Var. Partial Differential Equations, 56 (2017), Art. 17, 30 pp.
doi: 10.1007/s00526-017-1119-7. |
[12] |
K. Choe, N. Kim, Y. Lin and C.-S. Lin,
Existence of mixed type solutions in the Chern-Simons gauge theory of rank two in $ {\mathbb R}^2$, Journal of Functional Analysis, 273 (2017), 1734-1761.
doi: 10.1016/j.jfa.2017.05.012. |
[13] |
A. Comtet and G. W. Gibbons, Bogomol'nyi bounds for cosmic strings, Nucl. Phys. B, 299 (1988), 719–733.
doi: 10.1016/0550-3213(88)90370-7. |
[14] |
A. V. Fursikov and O. Yu. Imanuvilov, Local exact boundary controllability of the boussinesq equation, SIAM Journal of Control and Optimization, 36 (1998), 391–421. |
[15] |
Z. Hlousek and and D. Spector, Bogomol'nyi explained, Nucl. Phys. B, 397 (1993), 173. |
[16] |
G. Huang and C.-S. Lin,
The existence of non-topological solutions for a skew-symmetric Chern-Simons system, Indiana Univ. Math. J., 65 (2016), 453-491.
doi: 10.1512/iumj.2016.65.5769. |
[17] |
B. Linet, A vortex-line model for a system of cosmic strings in equilibrium, Gen. Relativ. Gravit., 20 (1988), 451–456.
doi: 10.1007/BF00758120. |
[18] |
L. Nirenberg, Topics in Nonlinear Analysis, Courant Lecture Notes in Math., 6, American Mathematical Society, 2001. |
[19] |
D. Tong and K. Wong, Vortices and Impurities, J. High Energy Phys., 1401 (2014), 090. |
[20] |
Y. Yang, Cosmic strings in a product Abelian gauge field theory, Nucl. Phys. B, 885 (2014), 25–33.
doi: 10.1016/j.nuclphysb.2014.05.013. |
[21] |
Y. Yang, Prescribing zeros and poles on a compact Riemann surface for a gravitationally coupled Abelian gauge field theory, Comm. Math. Phys., 249 (2004), 579–609. |
[1] |
Youngae Lee. Non-topological solutions in a generalized Chern-Simons model on torus. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1315-1330. doi: 10.3934/cpaa.2017064 |
[2] |
Huyuan Chen, Hichem Hajaiej. Classification of non-topological solutions of an elliptic equation arising from self-dual gauged Sigma model. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3373-3393. doi: 10.3934/cpaa.2021109 |
[3] |
Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064 |
[4] |
Dominique Blanchard, Nicolas Bruyère, Olivier Guibé. Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2213-2227. doi: 10.3934/cpaa.2013.12.2213 |
[5] |
Anupam Sen, T. Raja Sekhar. Structural stability of the Riemann solution for a strictly hyperbolic system of conservation laws with flux approximation. Communications on Pure and Applied Analysis, 2019, 18 (2) : 931-942. doi: 10.3934/cpaa.2019045 |
[6] |
Ahmad El Hajj, Aya Oussaily. Continuous solution for a non-linear eikonal system. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3795-3823. doi: 10.3934/cpaa.2021131 |
[7] |
Muhammad Aamer Rashid, Sarfraz Ahmad, Muhammad Kamran Siddiqui, Juan L. G. Guirao, Najma Abdul Rehman. Topological indices of discrete molecular structure. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2487-2495. doi: 10.3934/dcdss.2020418 |
[8] |
Jean-Jérôme Casanova. Existence of time-periodic strong solutions to a fluid–structure system. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3291-3313. doi: 10.3934/dcds.2019136 |
[9] |
Yingshu Lü. Symmetry and non-existence of solutions to an integral system. Communications on Pure and Applied Analysis, 2018, 17 (3) : 807-821. doi: 10.3934/cpaa.2018041 |
[10] |
Yong Zeng. Existence and uniqueness of very weak solution of the MHD type system. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5617-5638. doi: 10.3934/dcds.2020240 |
[11] |
Francisco Ortegón Gallego, María Teresa González Montesinos. Existence of a capacity solution to a coupled nonlinear parabolic--elliptic system. Communications on Pure and Applied Analysis, 2007, 6 (1) : 23-42. doi: 10.3934/cpaa.2007.6.23 |
[12] |
Thi-Bich-Ngoc Mac. Existence of solution for a system of repulsion and alignment: Comparison between theory and simulation. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3013-3027. doi: 10.3934/dcdsb.2015.20.3013 |
[13] |
Jitsuro Sugie, Tadayuki Hara. Existence and non-existence of homoclinic trajectories of the Liénard system. Discrete and Continuous Dynamical Systems, 1996, 2 (2) : 237-254. doi: 10.3934/dcds.1996.2.237 |
[14] |
Youjun Deng, Hongyu Liu, Xianchao Wang, Dong Wei, Liyan Zhu. Simultaneous recovery of surface heat flux and thickness of a solid structure by ultrasonic measurements. Electronic Research Archive, 2021, 29 (5) : 3081-3096. doi: 10.3934/era.2021027 |
[15] |
Vicent Caselles. An existence and uniqueness result for flux limited diffusion equations. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1151-1195. doi: 10.3934/dcds.2011.31.1151 |
[16] |
Ran Zhuo, Wenxiong Chen, Xuewei Cui, Zixia Yuan. Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1125-1141. doi: 10.3934/dcds.2016.36.1125 |
[17] |
Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure and Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011 |
[18] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[19] |
Masaki Kurokiba, Toshitaka Nagai, T. Ogawa. The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system. Communications on Pure and Applied Analysis, 2006, 5 (1) : 97-106. doi: 10.3934/cpaa.2006.5.97 |
[20] |
Chunxiao Guo, Fan Cui, Yongqian Han. Global existence and uniqueness of the solution for the fractional Schrödinger-KdV-Burgers system. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1687-1699. doi: 10.3934/dcdss.2016070 |
2021 Impact Factor: 1.588
Tools
Article outline
[Back to Top]