June  2020, 40(6): 3883-3907. doi: 10.3934/dcds.2020129

Convergence and structure theorems for order-preserving dynamical systems with mass conservation

1. 

Department of Mathematics, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan

2. 

CNRS, Laboratoire de Mathématiques, Université de Paris-Sud, F-91405 Orsay Cedex, France

3. 

Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan

* Corresponding author: Hiroshi Matano

Received  June 2019 Published  February 2020

Fund Project: This work was supported by the CNRS GDRI ReaDiNet and by JSPS KAKENHI Grant Numbers 26610028, 16H02151

We establish a general theory on the existence of fixed points and the convergence of orbits in order-preserving semi-dynamical systems having a certain mass conservation property (or, equivalently, a first integral). The base space is an ordered metric space and we do not assume differentiability of the system nor do we even require linear structure in the base space. Our first main result states that any orbit either converges to a fixed point or escapes to infinity (convergence theorem). This will be shown without assuming the existence of a fixed point. Our second main result states that the existence of one fixed point implies the existence of a continuum of fixed points that are totally ordered (structure theorem). This latter result, when applied to a linear problem for which $ 0 $ is always a fixed point, automatically implies the existence of positive fixed points. Our result extends the earlier related works by Arino (1991), Mierczyński (1987) and Banaji-Angeli (2010) considerably with exceedingly simpler proofs. We apply our results to a number of problems including molecular motor models with time-periodic or autonomous coefficients, certain classes of reaction-diffusion systems and delay-differential equations.

Citation: Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129
References:
[1]

N. D. AlikakosP. Hess and H. Matano, Discrete order preserving semigroups and stability for periodic parabolic differential equations, J. Differential Equations, 82 (1989), 322-341.  doi: 10.1016/0022-0396(89)90136-8.

[2]

O. Arino, Monotone semi-flows which have a monotone first integral, in Delay differential equations and dynamical systems, Lecture Notes in Math., 1475 (1991), Springer, Berlin, 64–75. doi: 10.1007/BFb0083480.

[3]

M. Banaji and D. Angeli, Convergence in strongly monotone systems with an increasing first integral, SIAM J. Math., 42 (2010), 334-353.  doi: 10.1137/090760751.

[4]

D. Bothe and D. Hilhorst, A reaction-diffusion system with fast reversible reaction, J. Math. Anal. Appl., 286 (2003), 125-135.  doi: 10.1016/S0022-247X(03)00457-8.

[5]

D. Bothe, Instantaneous limits of reversible chemical reactions in presence of macroscopic convection, J. Differential Equations, 193 (2003), 27-48.  doi: 10.1016/S0022-0396(03)00148-7.

[6]

D. Bothe and M. Pierre, The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 49-59.  doi: 10.3934/dcdss.2012.5.49.

[7]

M. ChipotS. Hastings and D. Kinderlehrer, Transport in a molecular motor system, M2AN Math. Model. Numer. Anal., 38 (2004), 1011-1034.  doi: 10.1051/m2an:2004048.

[8]

M. ChipotD. HilhorstD. Kinderlehrer and M. Olech, Contraction in L1 for a system arising in chemical reactions and molecular motors, Differ. Equ. Appl., 1 (2009), 139-151.  doi: 10.7153/dea-01-07.

[9]

M. ChipotD. Kinderlehrer and M. Kowalczyk, A variational principle for molecular motors, Meccanica, 38 (2003), 505-518.  doi: 10.1023/A:1024719028273.

[10]

J. Dolbeault, D. Kinderlehrer and M. Kowalczyk, Remarks about the flashing ratchet, Partial differential equations and inverse problems, Contemp. Math., 362 (2004), Amer. Math. Soc., Providence, RI, 167–175. doi: 10.1090/conm/362/06611.

[11]

J. H. Espenson, Chemical Kinetics and Reaction Mechanisms, 2nd edition, McGraw-Hill, New York, 1995.

[12]

S. HastingsD. Kinderlehrer and J. B. McLeod, Diffusion mediated transport in multiple state systems, SIAM J. Math. Anal., 39 (2008), 1208-1230.  doi: 10.1137/060650994.

[13]

S. Hastings, D. Kinderlehrer and J. B. McLeod, Diffusion mediated transport with a look at motor proteins, in, Recent Advances in Nonlinear Analysis, World Sci. Publ., Hackensack, NJ, (2008), 95–111. doi: 10.1142/9789812709257_0006.

[14]

M. H. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math., 383 (1988), 1-53. 

[15]

J.-F. Jiang, Periodic monotone systems with an invariant function, SIAM J. Math. Anal., 27 (1996), 1738-1744.  doi: 10.1137/S003614109326063X.

[16]

D. Kinderlehrer and M. Kowalczyk, Diffusion-mediated transport and the flashing ratchet, Arch. Ration. Mech. Anal., 161 (2002), 149-179.  doi: 10.1007/s002050100173.

[17]

H. Matano, Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30 (1984), 645-673. 

[18]

H. Matano and T. Ogiwara, Convergence results for general cooperative systems with mass conservation, work in progress.

[19]

J. Mierczyński, Strictly cooperative systems with a first integral, SIAM J. Math. Anal., 18 (1987), 642-646.  doi: 10.1137/0518049.

[20]

J. Mierczyński, Cooperative irreducible systems of ordinary differential equations with first integral, arXiv: 1208.4697 [math.CA], 2012.

[21]

F. Nakajima, Periodic time dependent gross-substitute systems, SIAM J. Appl. Math., 36 (1979), 421-427.  doi: 10.1137/0136032.

[22]

P. Poláčik, Convergence in Smooth Strongly monotone flows defined by semilinear parabolic equations, J. Diff. Eqns., 79 (1989), 89-110.  doi: 10.1016/0022-0396(89)90115-0.

[23]

P. Poláčik and E. Yanagida, Existence of stable subharmonic solutions for reaction-diffusion equations, Special issue in celebration of Jack K. Hale's 70th birthday, Part 4 (Atlanta, GA/Lisbon, 1998), J. Differential Equations, 169 (2001), 255-280.  doi: 10.1006/jdeq.2000.3899.

[24]

P. Poláčik and E. Yanagida, Stable subharmonic solutions of reaction-diffusion equations on an arbitrary domain, Discrete Contin. Dyn. Syst., 8 (2002), 209-218.  doi: 10.3934/dcds.2002.8.209.

[25]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.

[26]

J. Rubinstein and P. Sternberg, Nonlocal reaction-diffusion equations and nucleation, IMA Journal of Applied Mathematics, 48 (1992), 249-264.  doi: 10.1093/imamat/48.3.249.

[27]

H. H. Schaefer, Banach Lattice and Positive Operators, Springer-Verlag, Berlin, Heidelberg, New York, 1974.

[28]

G. R. Sell and F. Nakajima, Almost periodic gross-substitute dynamical systems, Tôhoku Math. J., 32 (1980), 255–263. doi: 10.2748/tmj/1178229641.

[29]

H. L. Smith and H. R. Thieme, Convergence for strongly ordered preserving semi-flows, SIAM J. Math. Anal., 22 (1991), 1081-1101.  doi: 10.1137/0522070.

[30]

P. Takáč, Convergence to equilibrium on invariant d-hypersurfaces for strongly increasing discrete-time semigroups, J. Math. Anal. Appl., 148 (1990), 223-244.  doi: 10.1016/0022-247X(90)90040-M.

[31]

B. TangY. Kuang and H. Smith, Strictly nonautonomous cooperative system with a first integral, SIAM J. Math. Anal., 24 (1993), 1331-1339.  doi: 10.1137/0524076.

show all references

References:
[1]

N. D. AlikakosP. Hess and H. Matano, Discrete order preserving semigroups and stability for periodic parabolic differential equations, J. Differential Equations, 82 (1989), 322-341.  doi: 10.1016/0022-0396(89)90136-8.

[2]

O. Arino, Monotone semi-flows which have a monotone first integral, in Delay differential equations and dynamical systems, Lecture Notes in Math., 1475 (1991), Springer, Berlin, 64–75. doi: 10.1007/BFb0083480.

[3]

M. Banaji and D. Angeli, Convergence in strongly monotone systems with an increasing first integral, SIAM J. Math., 42 (2010), 334-353.  doi: 10.1137/090760751.

[4]

D. Bothe and D. Hilhorst, A reaction-diffusion system with fast reversible reaction, J. Math. Anal. Appl., 286 (2003), 125-135.  doi: 10.1016/S0022-247X(03)00457-8.

[5]

D. Bothe, Instantaneous limits of reversible chemical reactions in presence of macroscopic convection, J. Differential Equations, 193 (2003), 27-48.  doi: 10.1016/S0022-0396(03)00148-7.

[6]

D. Bothe and M. Pierre, The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 49-59.  doi: 10.3934/dcdss.2012.5.49.

[7]

M. ChipotS. Hastings and D. Kinderlehrer, Transport in a molecular motor system, M2AN Math. Model. Numer. Anal., 38 (2004), 1011-1034.  doi: 10.1051/m2an:2004048.

[8]

M. ChipotD. HilhorstD. Kinderlehrer and M. Olech, Contraction in L1 for a system arising in chemical reactions and molecular motors, Differ. Equ. Appl., 1 (2009), 139-151.  doi: 10.7153/dea-01-07.

[9]

M. ChipotD. Kinderlehrer and M. Kowalczyk, A variational principle for molecular motors, Meccanica, 38 (2003), 505-518.  doi: 10.1023/A:1024719028273.

[10]

J. Dolbeault, D. Kinderlehrer and M. Kowalczyk, Remarks about the flashing ratchet, Partial differential equations and inverse problems, Contemp. Math., 362 (2004), Amer. Math. Soc., Providence, RI, 167–175. doi: 10.1090/conm/362/06611.

[11]

J. H. Espenson, Chemical Kinetics and Reaction Mechanisms, 2nd edition, McGraw-Hill, New York, 1995.

[12]

S. HastingsD. Kinderlehrer and J. B. McLeod, Diffusion mediated transport in multiple state systems, SIAM J. Math. Anal., 39 (2008), 1208-1230.  doi: 10.1137/060650994.

[13]

S. Hastings, D. Kinderlehrer and J. B. McLeod, Diffusion mediated transport with a look at motor proteins, in, Recent Advances in Nonlinear Analysis, World Sci. Publ., Hackensack, NJ, (2008), 95–111. doi: 10.1142/9789812709257_0006.

[14]

M. H. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math., 383 (1988), 1-53. 

[15]

J.-F. Jiang, Periodic monotone systems with an invariant function, SIAM J. Math. Anal., 27 (1996), 1738-1744.  doi: 10.1137/S003614109326063X.

[16]

D. Kinderlehrer and M. Kowalczyk, Diffusion-mediated transport and the flashing ratchet, Arch. Ration. Mech. Anal., 161 (2002), 149-179.  doi: 10.1007/s002050100173.

[17]

H. Matano, Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30 (1984), 645-673. 

[18]

H. Matano and T. Ogiwara, Convergence results for general cooperative systems with mass conservation, work in progress.

[19]

J. Mierczyński, Strictly cooperative systems with a first integral, SIAM J. Math. Anal., 18 (1987), 642-646.  doi: 10.1137/0518049.

[20]

J. Mierczyński, Cooperative irreducible systems of ordinary differential equations with first integral, arXiv: 1208.4697 [math.CA], 2012.

[21]

F. Nakajima, Periodic time dependent gross-substitute systems, SIAM J. Appl. Math., 36 (1979), 421-427.  doi: 10.1137/0136032.

[22]

P. Poláčik, Convergence in Smooth Strongly monotone flows defined by semilinear parabolic equations, J. Diff. Eqns., 79 (1989), 89-110.  doi: 10.1016/0022-0396(89)90115-0.

[23]

P. Poláčik and E. Yanagida, Existence of stable subharmonic solutions for reaction-diffusion equations, Special issue in celebration of Jack K. Hale's 70th birthday, Part 4 (Atlanta, GA/Lisbon, 1998), J. Differential Equations, 169 (2001), 255-280.  doi: 10.1006/jdeq.2000.3899.

[24]

P. Poláčik and E. Yanagida, Stable subharmonic solutions of reaction-diffusion equations on an arbitrary domain, Discrete Contin. Dyn. Syst., 8 (2002), 209-218.  doi: 10.3934/dcds.2002.8.209.

[25]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.

[26]

J. Rubinstein and P. Sternberg, Nonlocal reaction-diffusion equations and nucleation, IMA Journal of Applied Mathematics, 48 (1992), 249-264.  doi: 10.1093/imamat/48.3.249.

[27]

H. H. Schaefer, Banach Lattice and Positive Operators, Springer-Verlag, Berlin, Heidelberg, New York, 1974.

[28]

G. R. Sell and F. Nakajima, Almost periodic gross-substitute dynamical systems, Tôhoku Math. J., 32 (1980), 255–263. doi: 10.2748/tmj/1178229641.

[29]

H. L. Smith and H. R. Thieme, Convergence for strongly ordered preserving semi-flows, SIAM J. Math. Anal., 22 (1991), 1081-1101.  doi: 10.1137/0522070.

[30]

P. Takáč, Convergence to equilibrium on invariant d-hypersurfaces for strongly increasing discrete-time semigroups, J. Math. Anal. Appl., 148 (1990), 223-244.  doi: 10.1016/0022-247X(90)90040-M.

[31]

B. TangY. Kuang and H. Smith, Strictly nonautonomous cooperative system with a first integral, SIAM J. Math. Anal., 24 (1993), 1331-1339.  doi: 10.1137/0524076.

[1]

Toshiko Ogiwara, Hiroshi Matano. Monotonicity and convergence results in order-preserving systems in the presence of symmetry. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 1-34. doi: 10.3934/dcds.1999.5.1

[2]

Simeon Reich, Alexander J. Zaslavski. Convergence of generic infinite products of homogeneous order-preserving mappings. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 929-945. doi: 10.3934/dcds.1999.5.929

[3]

Juntao Sun, Jifeng Chu, Zhaosheng Feng. Homoclinic orbits for first order periodic Hamiltonian systems with spectrum point zero. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3807-3824. doi: 10.3934/dcds.2013.33.3807

[4]

J. R. Ward. Periodic solutions of first order systems. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 381-389. doi: 10.3934/dcds.2013.33.381

[5]

Horst R. Thieme. Eigenvectors of homogeneous order-bounded order-preserving maps. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 1073-1097. doi: 10.3934/dcdsb.2017053

[6]

Yi Wang, Dun Zhou. Transversality for time-periodic competitive-cooperative tridiagonal systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1821-1830. doi: 10.3934/dcdsb.2015.20.1821

[7]

Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281

[8]

Giuseppe Maria Coclite, Lorenzo Di Ruvo. A note on the convergence of the solution of the high order Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1247-1282. doi: 10.3934/dcds.2017052

[9]

Seiji Ukai. Time-periodic solutions of the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 579-596. doi: 10.3934/dcds.2006.14.579

[10]

Ke Wang, Qi Wang, Feng Yu. Stationary and time-periodic patterns of two-predator and one-prey systems with prey-taxis. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 505-543. doi: 10.3934/dcds.2017021

[11]

Tung Nguyen, Nar Rawal. Coexistence and extinction in Time-Periodic Volterra-Lotka type systems with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3799-3816. doi: 10.3934/dcdsb.2018080

[12]

Ahmed Y. Abdallah. Attractors for first order lattice systems with almost periodic nonlinear part. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1241-1255. doi: 10.3934/dcdsb.2019218

[13]

Dirk Hartmann, Isabella von Sivers. Structured first order conservation models for pedestrian dynamics. Networks and Heterogeneous Media, 2013, 8 (4) : 985-1007. doi: 10.3934/nhm.2013.8.985

[14]

Noui Djaidja, Mostefa Nadir. Comparison between Taylor and perturbed method for Volterra integral equation of the first kind. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 487-493. doi: 10.3934/naco.2020039

[15]

Richard A. Norton, G. R. W. Quispel. Discrete gradient methods for preserving a first integral of an ordinary differential equation. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1147-1170. doi: 10.3934/dcds.2014.34.1147

[16]

Thomas Leroy. Relativistic transfer equations: Comparison principle and convergence to the non-equilibrium regime. Kinetic and Related Models, 2015, 8 (4) : 725-763. doi: 10.3934/krm.2015.8.725

[17]

Parin Chaipunya, Poom Kumam. Fixed point theorems for cyclic operators with application in Fractional integral inclusions with delays. Conference Publications, 2015, 2015 (special) : 248-257. doi: 10.3934/proc.2015.0248

[18]

Michal Fečkan, Michal Pospíšil. Discretization of dynamical systems with first integrals. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3543-3554. doi: 10.3934/dcds.2013.33.3543

[19]

Shigeaki Koike, Takahiro Kosugi. Remarks on the comparison principle for quasilinear PDE with no zeroth order terms. Communications on Pure and Applied Analysis, 2015, 14 (1) : 133-142. doi: 10.3934/cpaa.2015.14.133

[20]

Adolfo Damiano Cafaro, Simone Fiori. Optimization of a control law to synchronize first-order dynamical systems on Riemannian manifolds by a transverse component. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3947-3969. doi: 10.3934/dcdsb.2021213

2021 Impact Factor: 1.588

Article outline

[Back to Top]