
-
Previous Article
Computer assisted proofs of two-dimensional attracting invariant tori for ODEs
- DCDS Home
- This Issue
-
Next Article
On the measure of KAM tori in two degrees of freedom
Generic Birkhoff spectra
1. | Department of Analysis, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, 1117, Budapest, Hungary |
2. | Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Santiago, Chile |
Suppose that $ \Omega = \{0, 1\}^\mathbb{N} $ and $ \sigma $ is the one-sided shift. The Birkhoff spectrum $ S_{f}(α) = \dim_{H}\Big \{ \omega\in\Omega:\lim\limits_{N \to \infty} \frac{1}{N} \sum\limits_{n = 1}^N f(\sigma^n \omega) = \alpha \Big \}, $ where $ \dim_{H} $ is the Hausdorff dimension. It is well-known that the support of $ S_{f}(α) $ is a bounded and closed interval $ L_f = [\alpha_{f, \min}^*, \alpha_{f, \max}^*] $ and $ S_{f}(α) $ on $ L_{f} $ is concave and upper semicontinuous. We are interested in possible shapes/properties of the spectrum, especially for generic/typical $ f\in C(\Omega) $ in the sense of Baire category. For a dense set in $ C(\Omega) $ the spectrum is not continuous on $ \mathbb{R} $, though for the generic $ f\in C(\Omega) $ the spectrum is continuous on $ \mathbb{R} $, but has infinite one-sided derivatives at the endpoints of $ L_{f} $. We give an example of a function which has continuous $ S_{f} $ on $ \mathbb{R} $, but with finite one-sided derivatives at the endpoints of $ L_{f} $. The spectrum of this function can be as close as possible to a "minimal spectrum". We use that if two functions $ f $ and $ g $ are close in $ C(\Omega) $ then $ S_{f} $ and $ S_{g} $ are close on $ L_{f} $ apart from neighborhoods of the endpoints.
References:
[1] |
L. Barreira and B. Saussol,
Variational principles and mixed multifractal spectra, Trans. Amer. Math. Soc., 353 (2001), 3919-3944.
doi: 10.1090/S0002-9947-01-02844-6. |
[2] |
R. Cawley and R. D. Mauldin,
Multifractal decompositions of moran fractals, Adv. Math., 92 (1992), 196-236.
doi: 10.1016/0001-8708(92)90064-R. |
[3] |
V. Climenhaga,
Multifractal formalism derived from thermodynamics for general dynamical systems, Electron. Res. Announc. Math. Sci., 17 (2010), 1-11.
doi: 10.3934/era.2010.17.1. |
[4] |
V. Climenhaga,
The thermodynamic approach to multifractal analysis, Ergodic Theory Dynam. Systems, 34 (2014), 1409-1450.
doi: 10.1017/etds.2014.12. |
[5] |
H. G. Eggleston,
The fractional dimension of a set defined by decimal properties, Quart. J. Math., Oxford Ser., 20 (1949), 31-36.
doi: 10.1093/qmath/os-20.1.31. |
[6] |
A.-H. Fan, D.-J. Feng and J. Wu,
Recurrence, dimension and entropy, J. London Math. Soc., 64 (2001), 229-244.
doi: 10.1017/S0024610701002137. |
[7] |
D.-J. Feng, K.-S. Lau and J. Wu,
Ergodic limits on the conformal repellers, Adv. Math., 169 (2002), 58-91.
doi: 10.1006/aima.2001.2054. |
[8] |
J. E. Hutchinson,
Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747.
doi: 10.1512/iumj.1981.30.30055. |
[9] |
G. Iommi, T. Jordan and M. Todd,
Transience and multifractal analysis, Ann. Inst. Poincaré Anal. Non Linéaire, 34 (2017), 407-421.
doi: 10.1016/j.anihpc.2015.12.007. |
[10] |
O. Jenkinson,
Ergodic optimization in dynamical systems, Ergodic Theory Dynam. Systems, 39 (2019), 2593-2618.
doi: 10.1017/etds.2017.142. |
[11] |
A. Johansson, T. Jordan, A. Öberg and M. Pollicott,
Multifractal analysis of non-uniformly hyperbolic systems, Israel J. Math., 177 (2010), 125-144.
doi: 10.1007/s11856-010-0040-y. |
[12] |
I. D. Morris,
Ergodic optimization for generic continuous functions, Discrete Contin. Dyn. Sys., 27 (2010), 383-388.
doi: 10.3934/dcds.2010.27.383. |
[13] |
L. Olsen,
Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages, J. Math. Pures Appl (9), 82 (2003), 1591-1649.
doi: 10.1016/j.matpur.2003.09.007. |
[14] |
Y. Pesin and H. Weiss, The multifractal analysis of Birkhoff averages and large deviations, in Global Analysis of Dynamical Systems, IoP Publishing, Bristol, UK, (2001), 419–431. |
[15] |
D. A. Rand,
The singularity spectrum f(α) for cookie cutters, Ergodic Theory Dynam. Systems, 9 (1989), 527-541.
doi: 10.1017/S0143385700005162. |
[16] |
R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. |
[17] |
J. Schmeling,
On the completeness of multifractal spectra, Ergodic Theory Dynam. Systems, 19 (1999), 1595-1616.
doi: 10.1017/S0143385799151988. |
[18] |
R. Sturman and J. Stark,
Semi-uniform ergodic theorems and applications to forced systems, Nonlinearity, 13 (2000), 113-143.
doi: 10.1088/0951-7715/13/1/306. |
[19] |
F. Takens and E. Verbitskiy,
On the variational principle for the topological entropy of certain non-compact sets, Ergodic Theory Dynam. Systems, 23 (2003), 317-348.
doi: 10.1017/S0143385702000913. |
show all references
References:
[1] |
L. Barreira and B. Saussol,
Variational principles and mixed multifractal spectra, Trans. Amer. Math. Soc., 353 (2001), 3919-3944.
doi: 10.1090/S0002-9947-01-02844-6. |
[2] |
R. Cawley and R. D. Mauldin,
Multifractal decompositions of moran fractals, Adv. Math., 92 (1992), 196-236.
doi: 10.1016/0001-8708(92)90064-R. |
[3] |
V. Climenhaga,
Multifractal formalism derived from thermodynamics for general dynamical systems, Electron. Res. Announc. Math. Sci., 17 (2010), 1-11.
doi: 10.3934/era.2010.17.1. |
[4] |
V. Climenhaga,
The thermodynamic approach to multifractal analysis, Ergodic Theory Dynam. Systems, 34 (2014), 1409-1450.
doi: 10.1017/etds.2014.12. |
[5] |
H. G. Eggleston,
The fractional dimension of a set defined by decimal properties, Quart. J. Math., Oxford Ser., 20 (1949), 31-36.
doi: 10.1093/qmath/os-20.1.31. |
[6] |
A.-H. Fan, D.-J. Feng and J. Wu,
Recurrence, dimension and entropy, J. London Math. Soc., 64 (2001), 229-244.
doi: 10.1017/S0024610701002137. |
[7] |
D.-J. Feng, K.-S. Lau and J. Wu,
Ergodic limits on the conformal repellers, Adv. Math., 169 (2002), 58-91.
doi: 10.1006/aima.2001.2054. |
[8] |
J. E. Hutchinson,
Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747.
doi: 10.1512/iumj.1981.30.30055. |
[9] |
G. Iommi, T. Jordan and M. Todd,
Transience and multifractal analysis, Ann. Inst. Poincaré Anal. Non Linéaire, 34 (2017), 407-421.
doi: 10.1016/j.anihpc.2015.12.007. |
[10] |
O. Jenkinson,
Ergodic optimization in dynamical systems, Ergodic Theory Dynam. Systems, 39 (2019), 2593-2618.
doi: 10.1017/etds.2017.142. |
[11] |
A. Johansson, T. Jordan, A. Öberg and M. Pollicott,
Multifractal analysis of non-uniformly hyperbolic systems, Israel J. Math., 177 (2010), 125-144.
doi: 10.1007/s11856-010-0040-y. |
[12] |
I. D. Morris,
Ergodic optimization for generic continuous functions, Discrete Contin. Dyn. Sys., 27 (2010), 383-388.
doi: 10.3934/dcds.2010.27.383. |
[13] |
L. Olsen,
Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages, J. Math. Pures Appl (9), 82 (2003), 1591-1649.
doi: 10.1016/j.matpur.2003.09.007. |
[14] |
Y. Pesin and H. Weiss, The multifractal analysis of Birkhoff averages and large deviations, in Global Analysis of Dynamical Systems, IoP Publishing, Bristol, UK, (2001), 419–431. |
[15] |
D. A. Rand,
The singularity spectrum f(α) for cookie cutters, Ergodic Theory Dynam. Systems, 9 (1989), 527-541.
doi: 10.1017/S0143385700005162. |
[16] |
R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. |
[17] |
J. Schmeling,
On the completeness of multifractal spectra, Ergodic Theory Dynam. Systems, 19 (1999), 1595-1616.
doi: 10.1017/S0143385799151988. |
[18] |
R. Sturman and J. Stark,
Semi-uniform ergodic theorems and applications to forced systems, Nonlinearity, 13 (2000), 113-143.
doi: 10.1088/0951-7715/13/1/306. |
[19] |
F. Takens and E. Verbitskiy,
On the variational principle for the topological entropy of certain non-compact sets, Ergodic Theory Dynam. Systems, 23 (2003), 317-348.
doi: 10.1017/S0143385702000913. |

[1] |
Frédéric Naud. Birkhoff cones, symbolic dynamics and spectrum of transfer operators. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 581-598. doi: 10.3934/dcds.2004.11.581 |
[2] |
Balázs Bárány, Michaƚ Rams, Ruxi Shi. On the multifractal spectrum of weighted Birkhoff averages. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2461-2497. doi: 10.3934/dcds.2021199 |
[3] |
Ian D. Morris. Ergodic optimization for generic continuous functions. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 383-388. doi: 10.3934/dcds.2010.27.383 |
[4] |
Aline Cerqueira, Carlos Matheus, Carlos Gustavo Moreira. Continuity of Hausdorff dimension across generic dynamical Lagrange and Markov spectra. Journal of Modern Dynamics, 2018, 12: 151-174. doi: 10.3934/jmd.2018006 |
[5] |
Shmuel Friedland, Gunter Ochs. Hausdorff dimension, strong hyperbolicity and complex dynamics. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 405-430. doi: 10.3934/dcds.1998.4.405 |
[6] |
Yunping Wang, Ercai Chen, Xiaoyao Zhou. Mean dimension theory in symbolic dynamics for finitely generated amenable groups. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022050 |
[7] |
Darren C. Ong. Orthogonal polynomials on the unit circle with quasiperiodic Verblunsky coefficients have generic purely singular continuous spectrum. Conference Publications, 2013, 2013 (special) : 605-609. doi: 10.3934/proc.2013.2013.605 |
[8] |
Juan Wang, Xiaodan Zhang, Yun Zhao. Dimension estimates for arbitrary subsets of limit sets of a Markov construction and related multifractal analysis. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2315-2332. doi: 10.3934/dcds.2014.34.2315 |
[9] |
Godofredo Iommi, Bartłomiej Skorulski. Multifractal analysis for the exponential family. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 857-869. doi: 10.3934/dcds.2006.16.857 |
[10] |
Frédéric Naud. The Ruelle spectrum of generic transfer operators. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2521-2531. doi: 10.3934/dcds.2012.32.2521 |
[11] |
Julien Barral, Yan-Hui Qu. On the higher-dimensional multifractal analysis. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 1977-1995. doi: 10.3934/dcds.2012.32.1977 |
[12] |
Jeffrey Diller, Han Liu, Roland K. W. Roeder. Typical dynamics of plane rational maps with equal degrees. Journal of Modern Dynamics, 2016, 10: 353-377. doi: 10.3934/jmd.2016.10.353 |
[13] |
Steven T. Piantadosi. Symbolic dynamics on free groups. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 725-738. doi: 10.3934/dcds.2008.20.725 |
[14] |
Aihua Fan, Lingmin Liao, Jacques Peyrière. Generic points in systems of specification and Banach valued Birkhoff ergodic average. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1103-1128. doi: 10.3934/dcds.2008.21.1103 |
[15] |
Thomas Dauer, Marlies Gerber. Generic absence of finite blocking for interior points of Birkhoff billiards. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4871-4893. doi: 10.3934/dcds.2016010 |
[16] |
Jon Chaika, Alex Eskin. Every flat surface is Birkhoff and Oseledets generic in almost every direction. Journal of Modern Dynamics, 2015, 9: 1-23. doi: 10.3934/jmd.2015.9.1 |
[17] |
Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627 |
[18] |
Zhihui Yuan. Multifractal analysis of random weak Gibbs measures. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5367-5405. doi: 10.3934/dcds.2017234 |
[19] |
Hiroki Sumi, Mariusz Urbański. Bowen parameter and Hausdorff dimension for expanding rational semigroups. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2591-2606. doi: 10.3934/dcds.2012.32.2591 |
[20] |
Sara Munday. On Hausdorff dimension and cusp excursions for Fuchsian groups. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2503-2520. doi: 10.3934/dcds.2012.32.2503 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]