-
Previous Article
Generic Birkhoff spectra
- DCDS Home
- This Issue
-
Next Article
The Mandelbrot set is the shadow of a Julia set
On the measure of KAM tori in two degrees of freedom
Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Largo San L. Murialdo 1 - 00146 Roma, Italy |
A conjecture of Arnold, Kozlov and Neishtadt on the exponentially small measure of the "non-torus" set in analytic systems with two degrees of freedom is discussed.
References:
[1] |
V. I. Arnold,
Conditions for the applicability, and estimate of the error, of an averaging method for systems which pass through states of resonance in the course of their evolution, Collected Works, 1 (1965), 477-480.
doi: 10.1007/978-3-642-01742-1_31. |
[2] |
V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Springer-Verlag, Berlin, 2006. |
[3] |
L. Biasco and L. Chierchia,
On the measure of Lagrangian invariant tori in nearly–integrable mechanical systems, Rend. Lincei Mat. Appl., 26 (2015), 423-432.
doi: 10.4171/RLM/713. |
[4] |
L. Biasco and L. Chierchia, KAM Theory for secondary tori, arXiv: 1702.06480v1 [math.DS]. |
[5] |
L. Biasco and L. Chierchia,
Explicit estimates on the measure of primary KAM tori, Ann. Mat. Pura Appl. (4), 197 (2018), 261-281.
doi: 10.1007/s10231-017-0678-8. |
[6] |
L. Biasco and L. Chierchia, On the topology of nearly–integrable Hamiltonians at simple resonances., To appear in Nonlinearity, 2020. arXiv: 1907.09434 [math.DS] |
[7] |
L. Biasco and L. Chierchia, Exponentially small measure of the non–torus set in 2 degrees of freedom, Work in progress. |
[8] |
P. A. M. Dirac,
The adiabatic invariance of the quantum integrals, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 107 (1925), 725-734.
doi: 10.1098/rspa.1925.0052. |
[9] |
M. Guzzo, L. Chierchia and G. Benettin,
The steep Nekhoroshev Theorem, Commun. Math. Phys., 342 (2016), 569-601.
doi: 10.1007/s00220-015-2555-x. |
[10] |
B.R. Hunt, T. Sauer and J.A. Yorke,
Prevalence: a translation-invariant "almost every" on infinite-dimensional spaces, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 217-238.
doi: 10.1090/S0273-0979-1992-00328-2. |
[11] |
B. R. Hunt and V. Y. Kaloshin, Prevalence, chapter 2, Handbook in Dynamical Systems, edited by H. Broer, F. Takens, B. Hasselblatt, 3 (2010), 43–87. |
[12] |
A. G. Medvedev, A. I. Neishtadt and D. V. Treschev,
Lagrangian tori near resonances of near–integrable Hamiltonian systems, Nonlinearity, 28 (2015), 2105-2130.
doi: 10.1088/0951-7715/28/7/2105. |
[13] |
A. I. Neishtadt,
On passage through resonances in the two-frequency problem, Sov. Phys., Dokl., 20 (1975), 189-191.
|
[14] |
A. I. Neishtadt,
Averaging, passage through resonances, and capture into resonance in two–frequency systems, Russian Math. Surveys, 69 (2014), 771-843.
doi: 10.4213/rm9603. |
[15] |
N. N. Nekhoroshev,
An exponential estimate of the time of stability of nearly- integrable Hamiltonian systems I, Math. Surveys, 32 (1977), 1-65.
|
[16] |
J. Pöschel,
Nekhoroshev estimates for quasi–convex Hamiltonian systems, Math. Z., 213 (1993), 187-216.
doi: 10.1007/BF03025718. |
show all references
References:
[1] |
V. I. Arnold,
Conditions for the applicability, and estimate of the error, of an averaging method for systems which pass through states of resonance in the course of their evolution, Collected Works, 1 (1965), 477-480.
doi: 10.1007/978-3-642-01742-1_31. |
[2] |
V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Springer-Verlag, Berlin, 2006. |
[3] |
L. Biasco and L. Chierchia,
On the measure of Lagrangian invariant tori in nearly–integrable mechanical systems, Rend. Lincei Mat. Appl., 26 (2015), 423-432.
doi: 10.4171/RLM/713. |
[4] |
L. Biasco and L. Chierchia, KAM Theory for secondary tori, arXiv: 1702.06480v1 [math.DS]. |
[5] |
L. Biasco and L. Chierchia,
Explicit estimates on the measure of primary KAM tori, Ann. Mat. Pura Appl. (4), 197 (2018), 261-281.
doi: 10.1007/s10231-017-0678-8. |
[6] |
L. Biasco and L. Chierchia, On the topology of nearly–integrable Hamiltonians at simple resonances., To appear in Nonlinearity, 2020. arXiv: 1907.09434 [math.DS] |
[7] |
L. Biasco and L. Chierchia, Exponentially small measure of the non–torus set in 2 degrees of freedom, Work in progress. |
[8] |
P. A. M. Dirac,
The adiabatic invariance of the quantum integrals, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 107 (1925), 725-734.
doi: 10.1098/rspa.1925.0052. |
[9] |
M. Guzzo, L. Chierchia and G. Benettin,
The steep Nekhoroshev Theorem, Commun. Math. Phys., 342 (2016), 569-601.
doi: 10.1007/s00220-015-2555-x. |
[10] |
B.R. Hunt, T. Sauer and J.A. Yorke,
Prevalence: a translation-invariant "almost every" on infinite-dimensional spaces, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 217-238.
doi: 10.1090/S0273-0979-1992-00328-2. |
[11] |
B. R. Hunt and V. Y. Kaloshin, Prevalence, chapter 2, Handbook in Dynamical Systems, edited by H. Broer, F. Takens, B. Hasselblatt, 3 (2010), 43–87. |
[12] |
A. G. Medvedev, A. I. Neishtadt and D. V. Treschev,
Lagrangian tori near resonances of near–integrable Hamiltonian systems, Nonlinearity, 28 (2015), 2105-2130.
doi: 10.1088/0951-7715/28/7/2105. |
[13] |
A. I. Neishtadt,
On passage through resonances in the two-frequency problem, Sov. Phys., Dokl., 20 (1975), 189-191.
|
[14] |
A. I. Neishtadt,
Averaging, passage through resonances, and capture into resonance in two–frequency systems, Russian Math. Surveys, 69 (2014), 771-843.
doi: 10.4213/rm9603. |
[15] |
N. N. Nekhoroshev,
An exponential estimate of the time of stability of nearly- integrable Hamiltonian systems I, Math. Surveys, 32 (1977), 1-65.
|
[16] |
J. Pöschel,
Nekhoroshev estimates for quasi–convex Hamiltonian systems, Math. Z., 213 (1993), 187-216.
doi: 10.1007/BF03025718. |
[1] |
Roman Šimon Hilscher. On general Sturmian theory for abnormal linear Hamiltonian systems. Conference Publications, 2011, 2011 (Special) : 684-691. doi: 10.3934/proc.2011.2011.684 |
[2] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[3] |
Kaizhi Wang, Lin Wang, Jun Yan. Aubry-Mather theory for contact Hamiltonian systems II. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 555-595. doi: 10.3934/dcds.2021128 |
[4] |
Krešimir Burazin, Marko Vrdoljak. Homogenisation theory for Friedrichs systems. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1017-1044. doi: 10.3934/cpaa.2014.13.1017 |
[5] |
Fuzhong Cong, Yong Li. Invariant hyperbolic tori for Hamiltonian systems with degeneracy. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 371-382. doi: 10.3934/dcds.1997.3.371 |
[6] |
Roberta Fabbri, Carmen Núñez, Ana M. Sanz. A perturbation theorem for linear Hamiltonian systems with bounded orbits. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 623-635. doi: 10.3934/dcds.2005.13.623 |
[7] |
Juan Carlos Marrero. Hamiltonian mechanical systems on Lie algebroids, unimodularity and preservation of volumes. Journal of Geometric Mechanics, 2010, 2 (3) : 243-263. doi: 10.3934/jgm.2010.2.243 |
[8] |
Manfred Deistler. Singular arma systems: A structure theory. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 383-391. doi: 10.3934/naco.2019025 |
[9] |
Xiaocai Wang, Junxiang Xu, Dongfeng Zhang. A KAM theorem for the elliptic lower dimensional tori with one normal frequency in reversible systems. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2141-2160. doi: 10.3934/dcds.2017092 |
[10] |
Andrea Davini, Maxime Zavidovique. Weak KAM theory for nonregular commuting Hamiltonians. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 57-94. doi: 10.3934/dcdsb.2013.18.57 |
[11] |
C. Chandre. Renormalization for cubic frequency invariant tori in Hamiltonian systems with two degrees of freedom. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 457-465. doi: 10.3934/dcdsb.2002.2.457 |
[12] |
Angelo B. Mingarelli. Nonlinear functionals in oscillation theory of matrix differential systems. Communications on Pure and Applied Analysis, 2004, 3 (1) : 75-84. doi: 10.3934/cpaa.2004.3.75 |
[13] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451 |
[14] |
Sun-Sig Byun, Hongbin Chen, Mijoung Kim, Lihe Wang. Lp regularity theory for linear elliptic systems. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 121-134. doi: 10.3934/dcds.2007.18.121 |
[15] |
Álvaro Pelayo, San Vű Ngọc. First steps in symplectic and spectral theory of integrable systems. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3325-3377. doi: 10.3934/dcds.2012.32.3325 |
[16] |
Santiago Capriotti. Dirac constraints in field theory and exterior differential systems. Journal of Geometric Mechanics, 2010, 2 (1) : 1-50. doi: 10.3934/jgm.2010.2.1 |
[17] |
Michele V. Bartuccelli, G. Gentile, Kyriakos V. Georgiou. Kam theory, Lindstedt series and the stability of the upside-down pendulum. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 413-426. doi: 10.3934/dcds.2003.9.413 |
[18] |
Diogo Gomes, Levon Nurbekyan. An infinite-dimensional weak KAM theory via random variables. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6167-6185. doi: 10.3934/dcds.2016069 |
[19] |
Xifeng Su, Lin Wang, Jun Yan. Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6487-6522. doi: 10.3934/dcds.2016080 |
[20] |
John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations and Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]