• Previous Article
    Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions
  • DCDS Home
  • This Issue
  • Next Article
    Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps
January  2021, 41(1): 257-275. doi: 10.3934/dcds.2020137

Time-fractional equations with reaction terms: Fundamental solutions and asymptotics

1. 

Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia

2. 

Dipartimento di Matematica e Fisica, Università della Campania "Luigi Vanvitelli", Viale Lincoln 5, 81100 Caserta, Italy

3. 

Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia

4. 

Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

* Corresponding author: Enrico Valdinoci

Received  September 2019 Published  January 2021 Early access  February 2020

We analyze the fundamental solution of a time-fractional problem, establishing existence and uniqueness in an appropriate functional space.

We also focus on the one-dimensional spatial setting in the case in which the time-fractional exponent is equal to, or larger than, $ \frac12 $. In this situation, we prove that the speed of invasion of the fundamental solution is at least "almost of square root type", namely it is larger than $ ct^\beta $ for any given $ c>0 $ and $ \beta\in\left(0,\frac12\right) $.

Citation: Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137
References:
[1]

N. Abatangelo and E. Valdinoci, Getting acquainted with the fractional Laplacian, in Contemporary Research in Elliptic PDEs and Related Topics, vol. 33 of Springer INdAM Ser., Springer, Cham, 2019, 1–105. https://link.springer.com/chapter/10.1007/978-3-030-18921-1_1.

[2]

E. Affili and E. Valdinoci, Decay estimates for evolution equations with classical and fractional time-derivatives, J. Differential Equations, 266 (2019), 4027-4060.  doi: 10.1016/j.jde.2018.09.031.

[3]

V. E. Arkhincheev and E. M. Baskin, Anomalous diffusion and drift in a comb model of percolation clusters, J. Exp.Theor. Phys., 73 (1991), 161–165. http://www.jetp.ac.ru/cgi-bin/e/index/e/73/1/p161?a=list.

[4]

X. CabréA.-C. Coulon and J.-M. Roquejoffre, Propagation in Fisher-KPP type equations with fractional diffusion in periodic media, C. R. Math. Acad. Sci. Paris, 350 (2012), 885-890.  doi: 10.1016/j.crma.2012.10.007.

[5]

X. Cabré and J.-M. Roquejoffre, The influence of fractional diffusion in {F}isher-KPP equations, Comm. Math. Phys., 320 (2013), 679-722.  doi: 10.1007/s00220-013-1682-5.

[6]

M. Caputo, Linear models of dissipation whose {$Q$} is almost frequency independent. II, Fract. Calc. Appl. Anal., 11 (2008), 4–14, Reprinted from Geophys. J. R. Astr. Soc., 13 (1967), 529–539. https://www.annalsofgeophysics.eu/index.php/annals/article/viewFile/5051/5122.

[7]

A. Carbotti, S. Dipierro and E. Valdinoci, Local density of solutions to fractional equations, De Gruyter Studies in Mathematics 74. De Gruyter, Berlin, https://www.degruyter.com/view/product/534026.

[8]

W. E. Deming and C. G. Colcord, The minimum in the gamma function, Nature, 135 (1935), 917. doi: 10.1038/135917b0.

[9]

K. Diethelm, The Analysis of Fractional Differential Equations, An application-oriented exposition using differential operators of Caputo type. Vol. 2004 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.

[10]

S. Dipierro and E. Valdinoci, A simple mathematical model inspired by the {P}urkinje cells: from delayed travelling waves to fractional diffusion, Bull. Math. Biol., 80 (2018), 1849-1870.  doi: 10.1007/s11538-018-0437-z.

[11]

S. DipierroE. Valdinoci and V. Vespri, Decay estimates for evolutionary equations with fractional time-diffusion, J. Evol. Equ., 19 (2019), 435-462.  doi: 10.1007/s00028-019-00482-z.

[12]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differential Equations, 199 (2004), 211-255.  doi: 10.1016/j.jde.2003.12.002.

[13]

A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions. {V}ol. III, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955, https://mathscinet.ams.org/mathscinet-getitem?mr=0066496, Based, in part, on notes left by Harry Bateman.

[14]

F. Ferrari, {W}eyl and {M}archaud {D}erivatives: A forgotten history, Mathematics, 6 (2018), 6. https://www.mdpi.com/2227-7390/6/1/6. doi: 10.3390/math6010006.

[15]

I. M. Gel'fand and G. E. Shilov, Generalized Functions. Vol. 3, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1967, Theory of differential equations, Translated from the Russian by Meinhard E. Mayer. https://www.ams.org/books/chel/379/chel379-endmatter.pdf.

[16]

C. IonescuA. LopesD. CopotJ. A. T. Machado and J. H. T. Bates, The role of fractional calculus in modeling biological phenomena: A review, Commun. Nonlinear Sci. Numer. Simul., 51 (2017), 141-159.  doi: 10.1016/j.cnsns.2017.04.001.

[17]

S. L. Kalla and B. Ross, The development of functional relations by means of fractional operators, in Fractional Calculus ({G}lasgow, 1984), vol. 138 of Res. Notes in Math., Pitman, Boston, MA, 1985, 32–43.

[18]

J. KemppainenJ. SiljanderV. Vergara and R. Zacher, Decay estimates for time-fractional and other non-local in time subdiffusion equations in $\Bbb{R}^d$, Math. Ann., 366 (2016), 941-979.  doi: 10.1007/s00208-015-1356-z.

[19]

J. KemppainenJ. Siljander and R. Zacher, Representation of solutions and large-time behavior for fully nonlocal diffusion equations, J. Differential Equations, 263 (2017), 149-201.  doi: 10.1016/j.jde.2017.02.030.

[20]

J. Kemppainen and R. Zacher, Long-time behavior of non-local in time {F}okker–{P}lanck equations via the entropy method, Math. Models Methods Appl. Sci., 29 (2019), 209-235.  doi: 10.1142/S0218202519500076.

[21]

Y. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation, Fract. Calc. Appl. Anal., 15 (2012), 141-160. 

[22]

Y. Luchko, Initial-boundary problems for the generalized multi-term time-fractional diffusion equation, J. Math. Anal. Appl., 374 (2011), 538-548.  doi: 10.1016/j.jmaa.2010.08.048.

[23]

F. Mainardi, On some properties of the Mittag-Leffler function {$E_\alpha(-t^\alpha)$}, completely monotone for {$t>0$} with $0 < \alpha < 1$, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2267-2278.  doi: 10.3934/dcdsb.2014.19.2267.

[24]

F. Mainardi, Y. Luchko and G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal., 4 (2001), 153–192. https://arXiv.org/pdf/cond-mat/0702419.pdf.

[25]

M. M. Meerschaert and A. Sikorskii, Stochastic Models for Fractional Calculus, vol. 43 of De Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin, 2012. https://www.degruyter.com/view/product/129781.

[26] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, Inc., San Diego, CA, 1999. 
[27]

J.-M. Roquejoffre and A. Tarfulea, Gradient estimates and symmetrization for Fisher-KPP front propagation with fractional diffusion, J. Math. Pures Appl. (9), 108 (2017), 399-424.  doi: 10.1016/j.matpur.2017.07.001.

[28]

B. Ross, The Development, Theory and Application of the Gamma-function and a Profile of Fractional-calculus, ProQuest LLC, Ann Arbor, MI, 1974, Thesis (Ph.D.)–New York University. http://gateway.proquest.com.pros.lib.unimi.it/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:7417154

[29]

B. Ross, The development of fractional calculus 1695–1900, Historia Math., 4 (1977), 75-89.  doi: 10.1016/0315-0860(77)90039-8.

[30]

B. Ross, Origins of fractional calculus and some applications, Internat. J. Math. Statist. Sci., 1 (1992), 21-34. 

[31]

J. Sánchez and V. Vergara, Long-time behavior of bounded global solutions to systems of nonlinear integro-differential equations, Asymptot. Anal., 85 (2013), 167-178.  doi: 10.3233/ASY-131180.

[32]

J. Sánchez and V. Vergara, Long-time behavior of nonlinear integro-differential evolution equations, Nonlinear Anal., 91 (2013), 20-31.  doi: 10.1016/j.na.2013.06.006.

[33]

T. SandevA. SchulzH. Kantz and A. Iomin, Heterogeneous diffusion in comb and fractal grid structures, Chaos Solitons Fractals, 114 (2018), 551-555.  doi: 10.1016/j.chaos.2017.04.041.

[34]

F. Santamaria, S. Wils, E. D. Schutter and G. J. Augustine, The diffusional properties of dendrites depend on the density of dendritic spines, Eur. J. Neurosci., 34 (2011), 561–568. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3156966/. doi: 10.1111/j.1460-9568.2011.07785.x.

[35]

H. Schiessel, C. Friedrich and A. Blumen, Applications to problems in polymer physics and rheology, in Applications of Fractional Calculus in Physics, World Sci. Publ., River Edge, NJ, 2000,331–376. doi: 10.1142/9789812817747_0007.

[36]

E. Topp and M. Yangari, Existence and uniqueness for parabolic problems with {C}aputo time derivative, J. Differential Equations, 262 (2017), 6018-6046.  doi: 10.1016/j.jde.2017.02.024.

[37]

V. Vergara and R. Zacher, A priori bounds for degenerate and singular evolutionary partial integro-differential equations, Nonlinear Anal., 73 (2010), 3572-3585.  doi: 10.1016/j.na.2010.07.039.

[38]

V. Vergara and R. Zacher, Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods, SIAM J. Math. Anal., 47 (2015), 210-239.  doi: 10.1137/130941900.

[39]

R. Wong and Y.-Q. Zhao, Exponential asymptotics of the {M}ittag-{L}effler function, Constr. Approx., 18 (2002), 355-385.  doi: 10.1007/s00365-001-0019-3.

[40]

R. Zacher, Maximal regularity of type {$L_p$} for abstract parabolic {V}olterra equations, J. Evol. Equ., 5 (2005), 79-103.  doi: 10.1007/s00028-004-0161-z.

[41]

R. Zacher, Weak solutions of abstract evolutionary integro-differential equations in {H}ilbert spaces, Funkcial. Ekvac., 52 (2009), 1-18.  doi: 10.1619/fesi.52.1.

[42]

R. Zacher, Time fractional diffusion equations: Solution concepts, regularity, and long-time behavior, in Handbook of Fractional Calculus with Applications. {V}ol. 2, De Gruyter, Berlin, 2019,159–179. https://www.degruyter.com/viewbooktoc/product/497030. doi: 10.1515/9783110571660-008.

show all references

References:
[1]

N. Abatangelo and E. Valdinoci, Getting acquainted with the fractional Laplacian, in Contemporary Research in Elliptic PDEs and Related Topics, vol. 33 of Springer INdAM Ser., Springer, Cham, 2019, 1–105. https://link.springer.com/chapter/10.1007/978-3-030-18921-1_1.

[2]

E. Affili and E. Valdinoci, Decay estimates for evolution equations with classical and fractional time-derivatives, J. Differential Equations, 266 (2019), 4027-4060.  doi: 10.1016/j.jde.2018.09.031.

[3]

V. E. Arkhincheev and E. M. Baskin, Anomalous diffusion and drift in a comb model of percolation clusters, J. Exp.Theor. Phys., 73 (1991), 161–165. http://www.jetp.ac.ru/cgi-bin/e/index/e/73/1/p161?a=list.

[4]

X. CabréA.-C. Coulon and J.-M. Roquejoffre, Propagation in Fisher-KPP type equations with fractional diffusion in periodic media, C. R. Math. Acad. Sci. Paris, 350 (2012), 885-890.  doi: 10.1016/j.crma.2012.10.007.

[5]

X. Cabré and J.-M. Roquejoffre, The influence of fractional diffusion in {F}isher-KPP equations, Comm. Math. Phys., 320 (2013), 679-722.  doi: 10.1007/s00220-013-1682-5.

[6]

M. Caputo, Linear models of dissipation whose {$Q$} is almost frequency independent. II, Fract. Calc. Appl. Anal., 11 (2008), 4–14, Reprinted from Geophys. J. R. Astr. Soc., 13 (1967), 529–539. https://www.annalsofgeophysics.eu/index.php/annals/article/viewFile/5051/5122.

[7]

A. Carbotti, S. Dipierro and E. Valdinoci, Local density of solutions to fractional equations, De Gruyter Studies in Mathematics 74. De Gruyter, Berlin, https://www.degruyter.com/view/product/534026.

[8]

W. E. Deming and C. G. Colcord, The minimum in the gamma function, Nature, 135 (1935), 917. doi: 10.1038/135917b0.

[9]

K. Diethelm, The Analysis of Fractional Differential Equations, An application-oriented exposition using differential operators of Caputo type. Vol. 2004 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.

[10]

S. Dipierro and E. Valdinoci, A simple mathematical model inspired by the {P}urkinje cells: from delayed travelling waves to fractional diffusion, Bull. Math. Biol., 80 (2018), 1849-1870.  doi: 10.1007/s11538-018-0437-z.

[11]

S. DipierroE. Valdinoci and V. Vespri, Decay estimates for evolutionary equations with fractional time-diffusion, J. Evol. Equ., 19 (2019), 435-462.  doi: 10.1007/s00028-019-00482-z.

[12]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differential Equations, 199 (2004), 211-255.  doi: 10.1016/j.jde.2003.12.002.

[13]

A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions. {V}ol. III, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955, https://mathscinet.ams.org/mathscinet-getitem?mr=0066496, Based, in part, on notes left by Harry Bateman.

[14]

F. Ferrari, {W}eyl and {M}archaud {D}erivatives: A forgotten history, Mathematics, 6 (2018), 6. https://www.mdpi.com/2227-7390/6/1/6. doi: 10.3390/math6010006.

[15]

I. M. Gel'fand and G. E. Shilov, Generalized Functions. Vol. 3, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1967, Theory of differential equations, Translated from the Russian by Meinhard E. Mayer. https://www.ams.org/books/chel/379/chel379-endmatter.pdf.

[16]

C. IonescuA. LopesD. CopotJ. A. T. Machado and J. H. T. Bates, The role of fractional calculus in modeling biological phenomena: A review, Commun. Nonlinear Sci. Numer. Simul., 51 (2017), 141-159.  doi: 10.1016/j.cnsns.2017.04.001.

[17]

S. L. Kalla and B. Ross, The development of functional relations by means of fractional operators, in Fractional Calculus ({G}lasgow, 1984), vol. 138 of Res. Notes in Math., Pitman, Boston, MA, 1985, 32–43.

[18]

J. KemppainenJ. SiljanderV. Vergara and R. Zacher, Decay estimates for time-fractional and other non-local in time subdiffusion equations in $\Bbb{R}^d$, Math. Ann., 366 (2016), 941-979.  doi: 10.1007/s00208-015-1356-z.

[19]

J. KemppainenJ. Siljander and R. Zacher, Representation of solutions and large-time behavior for fully nonlocal diffusion equations, J. Differential Equations, 263 (2017), 149-201.  doi: 10.1016/j.jde.2017.02.030.

[20]

J. Kemppainen and R. Zacher, Long-time behavior of non-local in time {F}okker–{P}lanck equations via the entropy method, Math. Models Methods Appl. Sci., 29 (2019), 209-235.  doi: 10.1142/S0218202519500076.

[21]

Y. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation, Fract. Calc. Appl. Anal., 15 (2012), 141-160. 

[22]

Y. Luchko, Initial-boundary problems for the generalized multi-term time-fractional diffusion equation, J. Math. Anal. Appl., 374 (2011), 538-548.  doi: 10.1016/j.jmaa.2010.08.048.

[23]

F. Mainardi, On some properties of the Mittag-Leffler function {$E_\alpha(-t^\alpha)$}, completely monotone for {$t>0$} with $0 < \alpha < 1$, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2267-2278.  doi: 10.3934/dcdsb.2014.19.2267.

[24]

F. Mainardi, Y. Luchko and G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal., 4 (2001), 153–192. https://arXiv.org/pdf/cond-mat/0702419.pdf.

[25]

M. M. Meerschaert and A. Sikorskii, Stochastic Models for Fractional Calculus, vol. 43 of De Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin, 2012. https://www.degruyter.com/view/product/129781.

[26] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, Inc., San Diego, CA, 1999. 
[27]

J.-M. Roquejoffre and A. Tarfulea, Gradient estimates and symmetrization for Fisher-KPP front propagation with fractional diffusion, J. Math. Pures Appl. (9), 108 (2017), 399-424.  doi: 10.1016/j.matpur.2017.07.001.

[28]

B. Ross, The Development, Theory and Application of the Gamma-function and a Profile of Fractional-calculus, ProQuest LLC, Ann Arbor, MI, 1974, Thesis (Ph.D.)–New York University. http://gateway.proquest.com.pros.lib.unimi.it/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:7417154

[29]

B. Ross, The development of fractional calculus 1695–1900, Historia Math., 4 (1977), 75-89.  doi: 10.1016/0315-0860(77)90039-8.

[30]

B. Ross, Origins of fractional calculus and some applications, Internat. J. Math. Statist. Sci., 1 (1992), 21-34. 

[31]

J. Sánchez and V. Vergara, Long-time behavior of bounded global solutions to systems of nonlinear integro-differential equations, Asymptot. Anal., 85 (2013), 167-178.  doi: 10.3233/ASY-131180.

[32]

J. Sánchez and V. Vergara, Long-time behavior of nonlinear integro-differential evolution equations, Nonlinear Anal., 91 (2013), 20-31.  doi: 10.1016/j.na.2013.06.006.

[33]

T. SandevA. SchulzH. Kantz and A. Iomin, Heterogeneous diffusion in comb and fractal grid structures, Chaos Solitons Fractals, 114 (2018), 551-555.  doi: 10.1016/j.chaos.2017.04.041.

[34]

F. Santamaria, S. Wils, E. D. Schutter and G. J. Augustine, The diffusional properties of dendrites depend on the density of dendritic spines, Eur. J. Neurosci., 34 (2011), 561–568. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3156966/. doi: 10.1111/j.1460-9568.2011.07785.x.

[35]

H. Schiessel, C. Friedrich and A. Blumen, Applications to problems in polymer physics and rheology, in Applications of Fractional Calculus in Physics, World Sci. Publ., River Edge, NJ, 2000,331–376. doi: 10.1142/9789812817747_0007.

[36]

E. Topp and M. Yangari, Existence and uniqueness for parabolic problems with {C}aputo time derivative, J. Differential Equations, 262 (2017), 6018-6046.  doi: 10.1016/j.jde.2017.02.024.

[37]

V. Vergara and R. Zacher, A priori bounds for degenerate and singular evolutionary partial integro-differential equations, Nonlinear Anal., 73 (2010), 3572-3585.  doi: 10.1016/j.na.2010.07.039.

[38]

V. Vergara and R. Zacher, Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods, SIAM J. Math. Anal., 47 (2015), 210-239.  doi: 10.1137/130941900.

[39]

R. Wong and Y.-Q. Zhao, Exponential asymptotics of the {M}ittag-{L}effler function, Constr. Approx., 18 (2002), 355-385.  doi: 10.1007/s00365-001-0019-3.

[40]

R. Zacher, Maximal regularity of type {$L_p$} for abstract parabolic {V}olterra equations, J. Evol. Equ., 5 (2005), 79-103.  doi: 10.1007/s00028-004-0161-z.

[41]

R. Zacher, Weak solutions of abstract evolutionary integro-differential equations in {H}ilbert spaces, Funkcial. Ekvac., 52 (2009), 1-18.  doi: 10.1619/fesi.52.1.

[42]

R. Zacher, Time fractional diffusion equations: Solution concepts, regularity, and long-time behavior, in Handbook of Fractional Calculus with Applications. {V}ol. 2, De Gruyter, Berlin, 2019,159–179. https://www.degruyter.com/viewbooktoc/product/497030. doi: 10.1515/9783110571660-008.

[1]

Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The numerical solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 621-636. doi: 10.3934/naco.2021026

[2]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1301-1322. doi: 10.3934/dcdsb.2021091

[3]

Tingting Liu, Qiaozhen Ma. Time-dependent asymptotic behavior of the solution for plate equations with linear memory. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4595-4616. doi: 10.3934/dcdsb.2018178

[4]

Shakir Sh. Yusubov, Elimhan N. Mahmudov. Optimality conditions of singular controls for systems with Caputo fractional derivatives. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021182

[5]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023

[6]

Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895

[7]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[8]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations and Control Theory, 2022, 11 (1) : 239-258. doi: 10.3934/eect.2021001

[9]

Miloud Moussai. Application of the bernstein polynomials for solving the nonlinear fractional type Volterra integro-differential equation with caputo fractional derivatives. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 551-568. doi: 10.3934/naco.2021021

[10]

Binjie Li, Xiaoping Xie. Regularity of solutions to time fractional diffusion equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3195-3210. doi: 10.3934/dcdsb.2018340

[11]

Sandra Carillo, Vanda Valente, Giorgio Vergara Caffarelli. Heat conduction with memory: A singular kernel problem. Evolution Equations and Control Theory, 2014, 3 (3) : 399-410. doi: 10.3934/eect.2014.3.399

[12]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[13]

Yongqin Liu. Asymptotic behavior of solutions to a nonlinear plate equation with memory. Communications on Pure and Applied Analysis, 2017, 16 (2) : 533-556. doi: 10.3934/cpaa.2017027

[14]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure and Applied Analysis, 2021, 20 (2) : 583-621. doi: 10.3934/cpaa.2020282

[15]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

[16]

Yajing Li, Yejuan Wang. The existence and exponential behavior of solutions to time fractional stochastic delay evolution inclusions with nonlinear multiplicative noise and fractional noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2665-2697. doi: 10.3934/dcdsb.2020027

[17]

Philip M. J. Trevelyan. Approximating the large time asymptotic reaction zone solution for fractional order kinetics $A^n B^m$. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 219-234. doi: 10.3934/dcdss.2012.5.219

[18]

Corrado Mascia. Stability analysis for linear heat conduction with memory kernels described by Gamma functions. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3569-3584. doi: 10.3934/dcds.2015.35.3569

[19]

Antonio Greco, Antonio Iannizzotto. Existence and convexity of solutions of the fractional heat equation. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2201-2226. doi: 10.3934/cpaa.2017109

[20]

Jiaohui Xu, Tomás Caraballo, José Valero. Asymptotic behavior of nonlocal partial differential equations with long time memory. Discrete and Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021140

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (466)
  • HTML views (459)
  • Cited by (0)

[Back to Top]