
-
Previous Article
$ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization
- DCDS Home
- This Issue
-
Next Article
Time-fractional equations with reaction terms: Fundamental solutions and asymptotics
Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions
1. | Departamento de Matemática, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil |
2. | Dipartimento di Matematica, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy |
$ \begin{equation*} \left\{\begin{array}{lcl} -\Delta u\ = g(v)&\mbox{in}&\Omega,\\ -\Delta v\ = f(u)&\mbox{in}&\Omega,\\ u\ = \ v = \ 0&\mbox{on}&\partial\Omega, \end{array}\right. \end{equation*} $ |
$ \Omega\subset \mathbb{R}^2 $ |
$ g $ |
$ f $ |
$ g $ |
$ f $ |
References:
[1] |
R. Adams, Sobolev Spaces, in Pure and Applied Mathematics, 65, Academic Press, New York-London, 1975. |
[2] |
H. Brézis and S. Wainger,
A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789.
doi: 10.1080/03605308008820154. |
[3] |
D. Cassani and C. Tarsi,
Existence of solitary waves for supercritical Schrödinger systems in dimension two, Calc. Var. Partial Differential Equations, 54 (2015), 1673-1704.
doi: 10.1007/s00526-015-0840-3. |
[4] |
A. Cianchi,
A Sharp Embedding Theorem for Orlicz-Sobolev Spaces, Indiana University Mathematics Journal, 45 (1996), 39-65.
doi: 10.1512/iumj.1996.45.1958. |
[5] |
D. de Figueiredo and P. Felmer,
On superquadratic elliptic systems, Trans. Amer. Math. Soc., 343 (1994), 99-116.
doi: 10.1090/S0002-9947-1994-1214781-2. |
[6] |
D. de Figueiredo, J. M. do Ó and B. Ruf,
Critical and subcritical elliptic systems in dimension two, Indiana University Mathematics Journal, 53 (2004), 1037-1053.
doi: 10.1512/iumj.2004.53.2402. |
[7] |
D. de Figueiredo, J. M. do Ó and B. Ruf,
An Orlicz-space approach to superlinear elliptic systems, J. Funct. Anal., 224 (2005), 471-496.
doi: 10.1016/j.jfa.2004.09.008. |
[8] |
D. de Figueiredo, O. Miyagaki and B. Ruf,
Elliptic equations in $ \mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.
doi: 10.1007/BF01205003. |
[9] |
D. de Figueiredo and B. Ruf,
Elliptic systems with nonlinearities of arbitrary growth, Mediterr. J. Math., 1 (2004), 417-431.
doi: 10.1007/s00009-004-0021-7. |
[10] |
S. Hencl,
A sharp form of an embedding into exponential and doube exponential spaces, J. Funct. Anal.., 204 (2003), 196-227.
doi: 10.1016/S0022-1236(02)00172-6. |
[11] |
J. Hulshof and R. van der Vorst,
Differential systems with strongly indefinite variational structure, J. Funct. Anal., 114 (1993), 32-58.
doi: 10.1006/jfan.1993.1062. |
[12] |
M. Krasnosel'skii and Y. Rutickii, Convex functions and Orlicz Spaces, P. Noordhoff, Ltd. Groningen, Netherlands, 1961. |
[13] |
M. Rao and Z. Ren, Theory of Orlicz Spaces, in Monographs and Textbooks in Pure and Applied Mathematics, 146 Marcel Dekker, Inc., New York, 1991. |
[14] |
B. Ruf, Lorentz-Sobolev spaces and nonlinear elliptic systems, in Contributions to Nonlinear Analysis, Progr. Nonlinear Differential Equations Appl., 66, Birkh user, Basel, 2006,471–489.
doi: 10.1007/3-7643-7401-2_32. |
show all references
References:
[1] |
R. Adams, Sobolev Spaces, in Pure and Applied Mathematics, 65, Academic Press, New York-London, 1975. |
[2] |
H. Brézis and S. Wainger,
A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789.
doi: 10.1080/03605308008820154. |
[3] |
D. Cassani and C. Tarsi,
Existence of solitary waves for supercritical Schrödinger systems in dimension two, Calc. Var. Partial Differential Equations, 54 (2015), 1673-1704.
doi: 10.1007/s00526-015-0840-3. |
[4] |
A. Cianchi,
A Sharp Embedding Theorem for Orlicz-Sobolev Spaces, Indiana University Mathematics Journal, 45 (1996), 39-65.
doi: 10.1512/iumj.1996.45.1958. |
[5] |
D. de Figueiredo and P. Felmer,
On superquadratic elliptic systems, Trans. Amer. Math. Soc., 343 (1994), 99-116.
doi: 10.1090/S0002-9947-1994-1214781-2. |
[6] |
D. de Figueiredo, J. M. do Ó and B. Ruf,
Critical and subcritical elliptic systems in dimension two, Indiana University Mathematics Journal, 53 (2004), 1037-1053.
doi: 10.1512/iumj.2004.53.2402. |
[7] |
D. de Figueiredo, J. M. do Ó and B. Ruf,
An Orlicz-space approach to superlinear elliptic systems, J. Funct. Anal., 224 (2005), 471-496.
doi: 10.1016/j.jfa.2004.09.008. |
[8] |
D. de Figueiredo, O. Miyagaki and B. Ruf,
Elliptic equations in $ \mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.
doi: 10.1007/BF01205003. |
[9] |
D. de Figueiredo and B. Ruf,
Elliptic systems with nonlinearities of arbitrary growth, Mediterr. J. Math., 1 (2004), 417-431.
doi: 10.1007/s00009-004-0021-7. |
[10] |
S. Hencl,
A sharp form of an embedding into exponential and doube exponential spaces, J. Funct. Anal.., 204 (2003), 196-227.
doi: 10.1016/S0022-1236(02)00172-6. |
[11] |
J. Hulshof and R. van der Vorst,
Differential systems with strongly indefinite variational structure, J. Funct. Anal., 114 (1993), 32-58.
doi: 10.1006/jfan.1993.1062. |
[12] |
M. Krasnosel'skii and Y. Rutickii, Convex functions and Orlicz Spaces, P. Noordhoff, Ltd. Groningen, Netherlands, 1961. |
[13] |
M. Rao and Z. Ren, Theory of Orlicz Spaces, in Monographs and Textbooks in Pure and Applied Mathematics, 146 Marcel Dekker, Inc., New York, 1991. |
[14] |
B. Ruf, Lorentz-Sobolev spaces and nonlinear elliptic systems, in Contributions to Nonlinear Analysis, Progr. Nonlinear Differential Equations Appl., 66, Birkh user, Basel, 2006,471–489.
doi: 10.1007/3-7643-7401-2_32. |


[1] |
Djairo G. De Figueiredo, João Marcos do Ó, Bernhard Ruf. Elliptic equations and systems with critical Trudinger-Moser nonlinearities. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 455-476. doi: 10.3934/dcds.2011.30.455 |
[2] |
Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure and Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011 |
[3] |
Kyril Tintarev. Is the Trudinger-Moser nonlinearity a true critical nonlinearity?. Conference Publications, 2011, 2011 (Special) : 1378-1384. doi: 10.3934/proc.2011.2011.1378 |
[4] |
Manassés de Souza. On a singular Hamiltonian elliptic systems involving critical growth in dimension two. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1859-1874. doi: 10.3934/cpaa.2012.11.1859 |
[5] |
Tomasz Cieślak. Trudinger-Moser type inequality for radially symmetric functions in a ring and applications to Keller-Segel in a ring. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2505-2512. doi: 10.3934/dcdsb.2013.18.2505 |
[6] |
Lucas C. F. Ferreira, Everaldo Medeiros, Marcelo Montenegro. An elliptic system and the critical hyperbola. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1169-1182. doi: 10.3934/cpaa.2015.14.1169 |
[7] |
Xiaobao Zhu. Remarks on singular trudinger-moser type inequalities. Communications on Pure and Applied Analysis, 2020, 19 (1) : 103-112. doi: 10.3934/cpaa.2020006 |
[8] |
Sami Aouaoui, Rahma Jlel. Singular weighted sharp Trudinger-Moser inequalities defined on $ \mathbb{R}^N $ and applications to elliptic nonlinear equations. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 781-813. doi: 10.3934/dcds.2021137 |
[9] |
Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1747-1756. doi: 10.3934/dcdss.2020452 |
[10] |
Kanishka Perera, Marco Squassina. Bifurcation results for problems with fractional Trudinger-Moser nonlinearity. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 561-576. doi: 10.3934/dcdss.2018031 |
[11] |
Paulo Rabelo. Elliptic systems involving critical growth in dimension two. Communications on Pure and Applied Analysis, 2009, 8 (6) : 2013-2035. doi: 10.3934/cpaa.2009.8.2013 |
[12] |
Daniela Cárcamo-Díaz, Jesús F. Palacián, Claudio Vidal, Patricia Yanguas. Nonlinear stability of elliptic equilibria in hamiltonian systems with exponential time estimates. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5183-5208. doi: 10.3934/dcds.2021073 |
[13] |
Van Hoang Nguyen. The Hardy–Moser–Trudinger inequality via the transplantation of Green functions. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3559-3574. doi: 10.3934/cpaa.2020155 |
[14] |
Xumin Wang. Singular Hardy-Trudinger-Moser inequality and the existence of extremals on the unit disc. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2717-2733. doi: 10.3934/cpaa.2019121 |
[15] |
Changliang Zhou, Chunqin Zhou. Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2309-2328. doi: 10.3934/cpaa.2018110 |
[16] |
Prosenjit Roy. On attainability of Moser-Trudinger inequality with logarithmic weights in higher dimensions. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5207-5222. doi: 10.3934/dcds.2019212 |
[17] |
Yamin Wang. On nonexistence of extremals for the Trudinger-Moser functionals involving $ L^p $ norms. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4257-4268. doi: 10.3934/cpaa.2020191 |
[18] |
Mengjie Zhang. Extremal functions for a class of trace Trudinger-Moser inequalities on a compact Riemann surface with smooth boundary. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1721-1735. doi: 10.3934/cpaa.2021038 |
[19] |
Tianqing An, Zhi-Qiang Wang. Periodic solutions of Hamiltonian systems with anisotropic growth. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1069-1082. doi: 10.3934/cpaa.2010.9.1069 |
[20] |
Diego D. Felix, Marcelo F. Furtado, Everaldo S. Medeiros. Semilinear elliptic problems involving exponential critical growth in the half-space. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4937-4953. doi: 10.3934/cpaa.2020219 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]