
-
Previous Article
$ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization
- DCDS Home
- This Issue
-
Next Article
Time-fractional equations with reaction terms: Fundamental solutions and asymptotics
Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions
1. | Departamento de Matemática, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil |
2. | Dipartimento di Matematica, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy |
$ \begin{equation*} \left\{\begin{array}{lcl} -\Delta u\ = g(v)&\mbox{in}&\Omega,\\ -\Delta v\ = f(u)&\mbox{in}&\Omega,\\ u\ = \ v = \ 0&\mbox{on}&\partial\Omega, \end{array}\right. \end{equation*} $ |
$ \Omega\subset \mathbb{R}^2 $ |
$ g $ |
$ f $ |
$ g $ |
$ f $ |
References:
[1] |
R. Adams, Sobolev Spaces, in Pure and Applied Mathematics, 65, Academic Press, New York-London, 1975. Google Scholar |
[2] |
H. Brézis and S. Wainger,
A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789.
doi: 10.1080/03605308008820154. |
[3] |
D. Cassani and C. Tarsi,
Existence of solitary waves for supercritical Schrödinger systems in dimension two, Calc. Var. Partial Differential Equations, 54 (2015), 1673-1704.
doi: 10.1007/s00526-015-0840-3. |
[4] |
A. Cianchi,
A Sharp Embedding Theorem for Orlicz-Sobolev Spaces, Indiana University Mathematics Journal, 45 (1996), 39-65.
doi: 10.1512/iumj.1996.45.1958. |
[5] |
D. de Figueiredo and P. Felmer,
On superquadratic elliptic systems, Trans. Amer. Math. Soc., 343 (1994), 99-116.
doi: 10.1090/S0002-9947-1994-1214781-2. |
[6] |
D. de Figueiredo, J. M. do Ó and B. Ruf,
Critical and subcritical elliptic systems in dimension two, Indiana University Mathematics Journal, 53 (2004), 1037-1053.
doi: 10.1512/iumj.2004.53.2402. |
[7] |
D. de Figueiredo, J. M. do Ó and B. Ruf,
An Orlicz-space approach to superlinear elliptic systems, J. Funct. Anal., 224 (2005), 471-496.
doi: 10.1016/j.jfa.2004.09.008. |
[8] |
D. de Figueiredo, O. Miyagaki and B. Ruf,
Elliptic equations in $ \mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.
doi: 10.1007/BF01205003. |
[9] |
D. de Figueiredo and B. Ruf,
Elliptic systems with nonlinearities of arbitrary growth, Mediterr. J. Math., 1 (2004), 417-431.
doi: 10.1007/s00009-004-0021-7. |
[10] |
S. Hencl,
A sharp form of an embedding into exponential and doube exponential spaces, J. Funct. Anal.., 204 (2003), 196-227.
doi: 10.1016/S0022-1236(02)00172-6. |
[11] |
J. Hulshof and R. van der Vorst,
Differential systems with strongly indefinite variational structure, J. Funct. Anal., 114 (1993), 32-58.
doi: 10.1006/jfan.1993.1062. |
[12] |
M. Krasnosel'skii and Y. Rutickii, Convex functions and Orlicz Spaces, P. Noordhoff, Ltd. Groningen, Netherlands, 1961. |
[13] |
M. Rao and Z. Ren, Theory of Orlicz Spaces, in Monographs and Textbooks in Pure and Applied Mathematics, 146 Marcel Dekker, Inc., New York, 1991. |
[14] |
B. Ruf, Lorentz-Sobolev spaces and nonlinear elliptic systems, in Contributions to Nonlinear Analysis, Progr. Nonlinear Differential Equations Appl., 66, Birkh user, Basel, 2006,471–489.
doi: 10.1007/3-7643-7401-2_32. |
show all references
References:
[1] |
R. Adams, Sobolev Spaces, in Pure and Applied Mathematics, 65, Academic Press, New York-London, 1975. Google Scholar |
[2] |
H. Brézis and S. Wainger,
A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789.
doi: 10.1080/03605308008820154. |
[3] |
D. Cassani and C. Tarsi,
Existence of solitary waves for supercritical Schrödinger systems in dimension two, Calc. Var. Partial Differential Equations, 54 (2015), 1673-1704.
doi: 10.1007/s00526-015-0840-3. |
[4] |
A. Cianchi,
A Sharp Embedding Theorem for Orlicz-Sobolev Spaces, Indiana University Mathematics Journal, 45 (1996), 39-65.
doi: 10.1512/iumj.1996.45.1958. |
[5] |
D. de Figueiredo and P. Felmer,
On superquadratic elliptic systems, Trans. Amer. Math. Soc., 343 (1994), 99-116.
doi: 10.1090/S0002-9947-1994-1214781-2. |
[6] |
D. de Figueiredo, J. M. do Ó and B. Ruf,
Critical and subcritical elliptic systems in dimension two, Indiana University Mathematics Journal, 53 (2004), 1037-1053.
doi: 10.1512/iumj.2004.53.2402. |
[7] |
D. de Figueiredo, J. M. do Ó and B. Ruf,
An Orlicz-space approach to superlinear elliptic systems, J. Funct. Anal., 224 (2005), 471-496.
doi: 10.1016/j.jfa.2004.09.008. |
[8] |
D. de Figueiredo, O. Miyagaki and B. Ruf,
Elliptic equations in $ \mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.
doi: 10.1007/BF01205003. |
[9] |
D. de Figueiredo and B. Ruf,
Elliptic systems with nonlinearities of arbitrary growth, Mediterr. J. Math., 1 (2004), 417-431.
doi: 10.1007/s00009-004-0021-7. |
[10] |
S. Hencl,
A sharp form of an embedding into exponential and doube exponential spaces, J. Funct. Anal.., 204 (2003), 196-227.
doi: 10.1016/S0022-1236(02)00172-6. |
[11] |
J. Hulshof and R. van der Vorst,
Differential systems with strongly indefinite variational structure, J. Funct. Anal., 114 (1993), 32-58.
doi: 10.1006/jfan.1993.1062. |
[12] |
M. Krasnosel'skii and Y. Rutickii, Convex functions and Orlicz Spaces, P. Noordhoff, Ltd. Groningen, Netherlands, 1961. |
[13] |
M. Rao and Z. Ren, Theory of Orlicz Spaces, in Monographs and Textbooks in Pure and Applied Mathematics, 146 Marcel Dekker, Inc., New York, 1991. |
[14] |
B. Ruf, Lorentz-Sobolev spaces and nonlinear elliptic systems, in Contributions to Nonlinear Analysis, Progr. Nonlinear Differential Equations Appl., 66, Birkh user, Basel, 2006,471–489.
doi: 10.1007/3-7643-7401-2_32. |


[1] |
Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020452 |
[2] |
Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128 |
[3] |
Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292 |
[4] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[5] |
Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020469 |
[6] |
Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030 |
[7] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020406 |
[8] |
Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2021001 |
[9] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020407 |
[10] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
[11] |
Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020108 |
[12] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[13] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[14] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[15] |
Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306 |
[16] |
Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020388 |
[17] |
Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227 |
[18] |
Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254 |
[19] |
Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020399 |
[20] |
Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]