Advanced Search
Article Contents
Article Contents

A functional CLT for nonconventional polynomial arrays

  • * Corresponding author: Yeor Hafouta

    * Corresponding author: Yeor Hafouta
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper we will prove a functional central limit theorem (CLT) for random functions of the form

    $ {\mathcal S}_N(t) = N^{-\frac12}\sum\limits_{n = 1}^{[Nt]} F(\xi_{q_1(n, N)}, \xi_{q_2(n, N)}, ..., \xi_{q_\ell(n, N)}) $

    where the $ q_i $'s are certain type of bivariate polynomials, $ F = F(x_1, ..., x_\ell) $ is a locally Hölder continuous function and the sequence of random variables $ \{\xi_n\} $ satisfies some mixing and moment conditions. This paper continues the line of research started in [15] and [17], and it is a generalization of the results in [9] and Chapter 3 of [11]. We will also prove a strong law of large numbers (SLLN) for the averages $ N^{-\frac12} {\mathcal S}_N(1) $ which extends the results from the beginning of Chapter 3 of [11] to general bivariate polynomial functions $ q_i $. Our results hold true for sequences $ \{\xi_n\} $ generated by a wide class of Markov chains and dynamical systems. As an application we obtain functional CLT's for expressions of the form $ N^{-\frac12}M([Nt]) $, where $ M(N) $ counts the number of multiple recurrence of the sequence $ \{\xi_n\} $ to certain sets $ A_1, ..., A_\ell $ which occur at the times $ q_1(n, N), ..., q_\ell(n, N) $, as well as SLLN's for these $ M(N) $'s. One of the simplest examples is when $ \xi_n $ is $ n $-the digit of a random $ m $-base or continued fraction expansion, and each $ A_i $ is singleton (i.e. it represent one possible value of a digit).

    Mathematics Subject Classification: Primary: 60F17, 60F05, 60J05; Secondary: 37D99.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. D. Barbour, Stein's Method for diffusion approximations, Probab. Th. Rel. Fields, 84 (1990), 297-322.  doi: 10.1007/BF01197887.
    [2] A. D. Barbour and S. Janson, A functional combinatorial central limit theorem, Electron. J. Probab., 14 (2009), 2352-2370.  doi: 10.1214/EJP.v14-709.
    [3] V. Bergelson, Weakly mixing PET, Ergodic Theory Dynam. Systems, 7 (1987), 337-349.  doi: 10.1017/S0143385700004090.
    [4] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Second revised edition, Lecture Notes in Mathematics, 470. Springer-Verlag, Berlin, 2008.
    [5] R. C. BradleyIntroduction to Strong Mixing Conditions, Volume 1, Kendrick Press, Heber City, 2007. 
    [6] H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math., 31 (1977), 204-256.  doi: 10.1007/BF02813304.
    [7] H. Furstenberg, Nonconventional ergodic averages, The Legacy of John von Neumann, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 50 (1990), 43-56.  doi: 10.1090/pspum/050/1067751.
    [8] Y. Hafouta and Y. Kifer, Berry-Esseen type estimates for nonconventional sums, Stoch. Proc. Appl., 126 (2016), 2430-2464.  doi: 10.1016/j.spa.2016.02.006.
    [9] Y. Hafouta and Y. Kifer, Nonconventional polynomial CLT, Stochastics, 89 (2017), 550-591.  doi: 10.1080/17442508.2016.1267181.
    [10] Y. Hafouta, Stein's method for nonconventional sums, Electron. Commun. Probab., 23 (2018), 14 pp. doi: 10.1214/18-ECP142.
    [11] Y. Hafouta and Y. Kifer, Nonconventional Limit Theorems and Random Dynamics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018. doi: 10.1142/10849.
    [12] Y. Hafouta, Nonconventional moderate deviations theorems and exponential concentration inequalities, Ann. Inst. H. Poincaré Probab. Statist., 56 (2020), 428–448, arXiv: 1805.00849. doi: 10.1214/19-AIHP967.
    [13] P. Hall and  C. C. HydeMartingale Central Limit Theory and Its Application, Academic Press, Inc., New York-London, 1980. 
    [14] N. T. A. Haydn and Y. Psiloyenis, Return times distribution for Markov towers with decay of correlations, Nonlinearity, 27 (2014), 1323-1349.  doi: 10.1088/0951-7715/27/6/1323.
    [15] Y. Kifer, Nonconventional limit theorems, Probab. Th. Rel. Fields, 148 (2010), 71-106.  doi: 10.1007/s00440-009-0223-9.
    [16] Y. Kifer, A nonconventional strong law of large numbers and fractal dimensions of some multiple recurrence sets, Stoch. Dyn., 12 (2012), 1150023, 21 pp. doi: 10.1142/S0219493711500237.
    [17] Y. Kifer and S. R. S. Varadhan, Nonconventional limit theorems in discrete and continuous time via martingales, Ann. Probab., 42 (2014), 649-688.  doi: 10.1214/12-AOP796.
    [18] Y. Kifer, Ergodic theorems for nonconventional arrays and an extension of the Szemerédi theorem, Discrete Contin. Dyn. Syst., 38 (2018), 2687-2716.  doi: 10.3934/dcds.2018113.
    [19] V. Maume-Deschamps, Projective metrics and mixing properties on towers, Trans. Amer. Math. Soc., 353 (2001), 3371-3389.  doi: 10.1090/S0002-9947-01-02786-6.
    [20] I. Melbourne and M. Nicol, Almost sure invariance principle for nonuniformly hyperbolic systems, Commun. Math. Phys., 260 (2005), 131-146.  doi: 10.1007/s00220-005-1407-5.
    [21] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math., 6 (1962), 64-94.  doi: 10.1215/ijm/1255631807.
    [22] L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. Math., 147 (1998), 585-650.  doi: 10.2307/120960.
    [23] L.-S. Young, Recurrence time and rate of mixing, Israel J. Math., 110 (1999), 153-188.  doi: 10.1007/BF02808180.
  • 加载中

Article Metrics

HTML views(249) PDF downloads(181) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint