    May  2020, 40(5): 2875-2889. doi: 10.3934/dcds.2020152

## A Gevrey class semigroup for a thermoelastic plate model with a fractional Laplacian: Between the Euler-Bernoulli and Kirchhoff models

 1 University of Puerto Rico, Rio Piedras Campus, Department of Mathematics, Faculty of Natural Sciences, 17 University AVE. STE 1701 San Juan PR 00925-2537, USA 2 Department of Mathematics and Statistics, Florida International University, Miami, FL 33199, USA 3 Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, USA

* Corresponding author: Louis Tebou

Received  July 2019 Revised  December 2019 Published  March 2020

Fund Project: The work of V. Keyantuo and M. Warma is partially supported by the Air Force Office of Scientific Research under Award NO [FA9550-18-1-0242]

In a bounded domain, we consider a thermoelastic plate with rotational forces. The rotational forces involve the spectral fractional Laplacian, with power parameter $0\le\theta\le 1$. The model includes both the Euler-Bernoulli ($\theta = 0$) and Kirchhoff ($\theta = 1$) models for thermoelastic plate as special cases. First, we show that the underlying semigroup is of Gevrey class $\delta$ for every $\delta>(2-\theta)/(2-4\theta)$ for both the clamped and hinged boundary conditions when the parameter $\theta$ lies in the interval $(0, 1/2)$. Then, we show that the semigroup is exponentially stable for hinged boundary conditions, for all values of $\theta$ in $[0, 1]$. Finally, we prove, by constructing a counterexample, that, under hinged boundary conditions, the semigroup is not analytic, for all $\theta$ in the interval $(0, 1]$. The main features of our Gevrey class proof are: the frequency domain method, appropriate decompositions of the components of the system and the use of Lions' interpolation inequalities.

Citation: Valentin Keyantuo, Louis Tebou, Mahamadi Warma. A Gevrey class semigroup for a thermoelastic plate model with a fractional Laplacian: Between the Euler-Bernoulli and Kirchhoff models. Discrete & Continuous Dynamical Systems, 2020, 40 (5) : 2875-2889. doi: 10.3934/dcds.2020152
##### References:
  H. Antil, J. Pfefferer and M. Warma, A note on semilinear fractional elliptic equation: Analysis and discretization, ESAIM Math. Model. Numer. Anal., 51 (2017), 2049-2067.  doi: 10.1051/m2an/2017023.  Google Scholar  G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation, Rend. Istit. Mat. Univ. Trieste, 28 (1997), 1-28. Google Scholar  G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation, SIAM J. Math. Anal., 29 (1998), 155-182.  doi: 10.1137/S0036141096300823.  Google Scholar  S. P. Chen and R. Triggiani, Gevrey class semigroups arising from elastic systems with gentle dissipation: The case $0 < \alpha < 1/2$, Proc. Am. Math. Soc., 110 (1990), 401-415.  doi: 10.2307/2048084.  Google Scholar  C. M. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity, Arch. Rational Mech. Anal., 29 (1968), 241-271.  doi: 10.1007/BF00276727.  Google Scholar  F. Dell'Oro, J. E. Mun oz-Rivera and V. Pata, Stability properties of an abstract system with applications to linear thermoelastic plates, J. Evol. Equations, 13 (2013), 777-794.  doi: 10.1007/s00028-013-0202-6.  Google Scholar  F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations, 1 (1985), 43-56. Google Scholar  J. U. Kim, On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889-899.  doi: 10.1137/0523047.  Google Scholar  V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics, Masson, Paris, John Wiley & Sons, Ltd., Chichester, 1994. Google Scholar  J. E. Lagnese, Boundary Stabilization of Thin Plates, SIAM Stud. Appl. Math. 10, SIAM, Philadelphia, PA, 1989. doi: 10.1137/1.9781611970821.  Google Scholar  I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with free boundary conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci.(4), 27 (1998), 457-482. Google Scholar  I. Lasiecka and R. Triggiani, Two direct proofs on the analyticity of the s.c. semigroup arising in abstract thermo-elastic equations, Adv. Differential Equations, 3 (1998), 387-416. Google Scholar  I. Lasiecka and R. Triggiani, Analyticity and lack thereof, of thermo-elastic semigroups, Control and Partial Differential Equations, ESAIM Proc., Soc. Math. Appl. Indust., Paris, 4 (1998), 199-222.  doi: 10.1051/proc:1998029.  Google Scholar  I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with coupled hinged/Neumann B.C. Abstr, Abstr. Appl. Anal., 3 (1998), 153-169.  doi: 10.1155/S1085337598000487.  Google Scholar  I. Lasiecka and R. Triggiani, Structural decomposition of thermo-elastic semigroups with rotational forces, Semigroup Forum, 60 (2000), 16-66.  doi: 10.1007/s002330010003.  Google Scholar  G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity, Arch. Ration. Mech. Anal., 148 (1999), 179-231.  doi: 10.1007/s002050050160.  Google Scholar  J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation des Systèmes Distribués, Research in Applied Mathematics, 8. Masson, Paris, 1988. Google Scholar  K. S. Liu and Z. Y. Liu, Exponential stability and analyticity of abstract linear thermoelastic systems, Z. Angew. Math. Phys., 48 (1997), 885-904.  doi: 10.1007/s000330050071.  Google Scholar  Z.-Y. Liu and M. Renardy, A note on the equations of thermoelastic plate, Appl. Math. Lett., 8 (1995), 1-6.  doi: 10.1016/0893-9659(95)00020-Q.  Google Scholar  Z. Y. Liu and S. M. Zheng, Exponential stability of the Kirchhoff plate with thermal or viscoelastic damping, Quarterly Appl. Math., 55 (1997), 551-564.  doi: 10.1090/qam/1466148.  Google Scholar  W.-J. Liu and E. Zuazua, Uniform stabilization of the higher dimensional system of thermoelasticity with a nonlinear boundary feedback, Quarterly Appl. Math., 59 (2001), 269-314.  doi: 10.1090/qam/1828455.  Google Scholar  A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar  G. Perla-Menzala and E. Zuazua, The energy decay rate for the modified von Kármán system of thermoelastic plates: An improvement, Applied Mathematics Letters, 16 (2003), 531-534.  doi: 10.1016/S0893-9659(03)00032-6.  Google Scholar  J. Prüss, On the spectrum of C0-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.  doi: 10.2307/1999112.  Google Scholar  S. W. Taylor, Gevrey Regularity of Solutions of Evolution Equations and Boundary Controllability, Thesis (Ph.D.)–University of Minnesota. 1989, 182 pp. Google Scholar  L. Tebou, Stabilization of some coupled hyperbolic/parabolic equations, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1601-1620.  doi: 10.3934/dcdsb.2010.14.1601.  Google Scholar  L. Tebou, Uniform analyticity and exponential decay of the semigroup associated with a thermoelastic plate equation with perturbed boundary conditions, C. R. Math. Acad. Sci. Paris, 351 (2013), 539-544.  doi: 10.1016/j.crma.2013.07.014.  Google Scholar

show all references

##### References:
  H. Antil, J. Pfefferer and M. Warma, A note on semilinear fractional elliptic equation: Analysis and discretization, ESAIM Math. Model. Numer. Anal., 51 (2017), 2049-2067.  doi: 10.1051/m2an/2017023.  Google Scholar  G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation, Rend. Istit. Mat. Univ. Trieste, 28 (1997), 1-28. Google Scholar  G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation, SIAM J. Math. Anal., 29 (1998), 155-182.  doi: 10.1137/S0036141096300823.  Google Scholar  S. P. Chen and R. Triggiani, Gevrey class semigroups arising from elastic systems with gentle dissipation: The case $0 < \alpha < 1/2$, Proc. Am. Math. Soc., 110 (1990), 401-415.  doi: 10.2307/2048084.  Google Scholar  C. M. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity, Arch. Rational Mech. Anal., 29 (1968), 241-271.  doi: 10.1007/BF00276727.  Google Scholar  F. Dell'Oro, J. E. Mun oz-Rivera and V. Pata, Stability properties of an abstract system with applications to linear thermoelastic plates, J. Evol. Equations, 13 (2013), 777-794.  doi: 10.1007/s00028-013-0202-6.  Google Scholar  F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations, 1 (1985), 43-56. Google Scholar  J. U. Kim, On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889-899.  doi: 10.1137/0523047.  Google Scholar  V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics, Masson, Paris, John Wiley & Sons, Ltd., Chichester, 1994. Google Scholar  J. E. Lagnese, Boundary Stabilization of Thin Plates, SIAM Stud. Appl. Math. 10, SIAM, Philadelphia, PA, 1989. doi: 10.1137/1.9781611970821.  Google Scholar  I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with free boundary conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci.(4), 27 (1998), 457-482. Google Scholar  I. Lasiecka and R. Triggiani, Two direct proofs on the analyticity of the s.c. semigroup arising in abstract thermo-elastic equations, Adv. Differential Equations, 3 (1998), 387-416. Google Scholar  I. Lasiecka and R. Triggiani, Analyticity and lack thereof, of thermo-elastic semigroups, Control and Partial Differential Equations, ESAIM Proc., Soc. Math. Appl. Indust., Paris, 4 (1998), 199-222.  doi: 10.1051/proc:1998029.  Google Scholar  I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with coupled hinged/Neumann B.C. Abstr, Abstr. Appl. Anal., 3 (1998), 153-169.  doi: 10.1155/S1085337598000487.  Google Scholar  I. Lasiecka and R. Triggiani, Structural decomposition of thermo-elastic semigroups with rotational forces, Semigroup Forum, 60 (2000), 16-66.  doi: 10.1007/s002330010003.  Google Scholar  G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity, Arch. Ration. Mech. Anal., 148 (1999), 179-231.  doi: 10.1007/s002050050160.  Google Scholar  J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation des Systèmes Distribués, Research in Applied Mathematics, 8. Masson, Paris, 1988. Google Scholar  K. S. Liu and Z. Y. Liu, Exponential stability and analyticity of abstract linear thermoelastic systems, Z. Angew. Math. Phys., 48 (1997), 885-904.  doi: 10.1007/s000330050071.  Google Scholar  Z.-Y. Liu and M. Renardy, A note on the equations of thermoelastic plate, Appl. Math. Lett., 8 (1995), 1-6.  doi: 10.1016/0893-9659(95)00020-Q.  Google Scholar  Z. Y. Liu and S. M. Zheng, Exponential stability of the Kirchhoff plate with thermal or viscoelastic damping, Quarterly Appl. Math., 55 (1997), 551-564.  doi: 10.1090/qam/1466148.  Google Scholar  W.-J. Liu and E. Zuazua, Uniform stabilization of the higher dimensional system of thermoelasticity with a nonlinear boundary feedback, Quarterly Appl. Math., 59 (2001), 269-314.  doi: 10.1090/qam/1828455.  Google Scholar  A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar  G. Perla-Menzala and E. Zuazua, The energy decay rate for the modified von Kármán system of thermoelastic plates: An improvement, Applied Mathematics Letters, 16 (2003), 531-534.  doi: 10.1016/S0893-9659(03)00032-6.  Google Scholar  J. Prüss, On the spectrum of C0-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.  doi: 10.2307/1999112.  Google Scholar  S. W. Taylor, Gevrey Regularity of Solutions of Evolution Equations and Boundary Controllability, Thesis (Ph.D.)–University of Minnesota. 1989, 182 pp. Google Scholar  L. Tebou, Stabilization of some coupled hyperbolic/parabolic equations, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1601-1620.  doi: 10.3934/dcdsb.2010.14.1601.  Google Scholar  L. Tebou, Uniform analyticity and exponential decay of the semigroup associated with a thermoelastic plate equation with perturbed boundary conditions, C. R. Math. Acad. Sci. Paris, 351 (2013), 539-544.  doi: 10.1016/j.crma.2013.07.014.  Google Scholar
  Flank D. M. Bezerra, Vera L. Carbone, Marcelo J. D. Nascimento, Karina Schiabel. Pullback attractors for a class of non-autonomous thermoelastic plate systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3553-3571. doi: 10.3934/dcdsb.2017214  Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations & Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241  Abdallah Ben Abdallah, Farhat Shel. Exponential stability of a general network of 1-d thermoelastic rods. Mathematical Control & Related Fields, 2012, 2 (1) : 1-16. doi: 10.3934/mcrf.2012.2.1  Pedro Roberto de Lima, Hugo D. Fernández Sare. General condition for exponential stability of thermoelastic Bresse systems with Cattaneo's law. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3575-3596. doi: 10.3934/cpaa.2020156  Moncef Aouadi, Taoufik Moulahi. The controllability of a thermoelastic plate problem revisited. Evolution Equations & Control Theory, 2018, 7 (1) : 1-31. doi: 10.3934/eect.2018001  Lei Wang, Zhong-Jie Han, Gen-Qi Xu. Exponential-stability and super-stability of a thermoelastic system of type II with boundary damping. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2733-2750. doi: 10.3934/dcdsb.2015.20.2733  Gilbert Peralta. Uniform exponential stability of a fluid-plate interaction model due to thermal effects. Evolution Equations & Control Theory, 2020, 9 (1) : 39-60. doi: 10.3934/eect.2020016  Monica Conti, Elsa M. Marchini, Vittorino Pata. Exponential stability for a class of linear hyperbolic equations with hereditary memory. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1555-1565. doi: 10.3934/dcdsb.2013.18.1555  Ramón Quintanilla, Reinhard Racke. Stability for thermoelastic plates with two temperatures. Discrete & Continuous Dynamical Systems, 2017, 37 (12) : 6333-6352. doi: 10.3934/dcds.2017274  Robert Denk, Yoshihiro Shibata. Generation of semigroups for the thermoelastic plate equation with free boundary conditions. Evolution Equations & Control Theory, 2019, 8 (2) : 301-313. doi: 10.3934/eect.2019016  Irena Lasiecka, Mathias Wilke. Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5189-5202. doi: 10.3934/dcds.2013.33.5189  Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643  Xiaobin Yao, Qiaozhen Ma, Tingting Liu. Asymptotic behavior for stochastic plate equations with rotational inertia and Kelvin-Voigt dissipative term on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1889-1917. doi: 10.3934/dcdsb.2018247  Iryna Ryzhkova-Gerasymova. Long time behaviour of strong solutions to interactive fluid-plate system without rotational inertia. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1243-1265. doi: 10.3934/dcdsb.2018150  Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure & Applied Analysis, 2021, 20 (5) : 2065-2100. doi: 10.3934/cpaa.2021058  Wenjun Liu, Jiangyong Yu, Gang Li. Global existence, exponential decay and blow-up of solutions for a class of fractional pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021121  Salim A. Messaoudi, Abdelfeteh Fareh. Exponential decay for linear damped porous thermoelastic systems with second sound. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 599-612. doi: 10.3934/dcdsb.2015.20.599  Takayuki Niimura. Attractors and their stability with respect to rotational inertia for nonlocal extensible beam equations. Discrete & Continuous Dynamical Systems, 2020, 40 (5) : 2561-2591. doi: 10.3934/dcds.2020141  Fahd Jarad, Sugumaran Harikrishnan, Kamal Shah, Kuppusamy Kanagarajan. Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 723-739. doi: 10.3934/dcdss.2020040  Francesca Bucci, Igor Chueshov. Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations. Discrete & Continuous Dynamical Systems, 2008, 22 (3) : 557-586. doi: 10.3934/dcds.2008.22.557

2020 Impact Factor: 1.392