- Previous Article
- DCDS Home
- This Issue
-
Next Article
Local well-posedness for Navier-Stokes equations with a class of ill-prepared initial data
Dynamical systems with a prescribed globally bp-attracting set and applications to conservative dynamics
West University of Timişoara, Faculty of Mathematics and Computer Science, Department of Mathematics, Blvd. Vasile Pȃrvan, No. 4, 300223–Timişoara, Romȃnia |
Given an arbitrary fixed closed subset $ \mathcal{C}\subset\mathbb{R}^n $, we provide an explicit method to construct a dynamical system which admits the regular part of $ \mathcal{C} $ as globally bp-attracting set, i.e. a closed and invariant set which attracts every bounded positive orbit of the dynamical system. As application, we provide an explicit method of leafwise asymptotic bp-stabilization of the regular part of an a-priori given invariant set of a conservative system. The theoretical results are illustrated for the completely integrable case of the Rössler dynamical system.
References:
[1] |
G.-I. Bischi, C. Mira and L. Gardini,
Unbounded sets of attraction, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10 (2000), 1437-1469.
doi: 10.1142/S0218127400000980. |
[2] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013.
doi: 10.1007/978-1-4614-4581-4. |
[3] |
B. Günther and J. Segal,
Every attractor of a flow on a manifold has the shape of a finite polyhedron, Proc. Amer. Math. Soc., 119 (1993), 321-329.
doi: 10.1090/S0002-9939-1993-1170545-4. |
[4] |
B. Günther,
Construction of differentiable flows with prescribed attractor, Topology Appl., 62 (1995), 87-91.
doi: 10.1016/0166-8641(94)00047-7. |
[5] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25. American Mathematical Society, Providence, 1988. |
[6] |
P. Hartman, Ordinary Differential Equations, Classics in Applied Mathematics, 38. SIAM, Philadelphia, PA, 2002.
doi: 10.1137/1.9780898719222. |
[7] |
J. M. Lee, Introduction to Smooth Manifolds, Second edition, Graduate Texts in Mathematics, 218. Springer, New York, 2013. |
[8] |
T. S. Ratiu, R. M. Tudoran, L. Sbano, E. Sousa Dias and G. Terra,
Chapter II: A crash course in geometric mechanics, London Math. Soc. Lecture Note Ser., Geometric mechanics and symmetry, Cambridge Univ. Press, Cambridge, 306 (2005), 23-156.
doi: 10.1017/CBO9780511526367.003. |
[9] |
J. C. Robinson, Dimensions, Embeddings, and Attractors, Cambridge Tracts in Mathematics, 186. Cambridge University Press, Cambridge, 2011.
![]() ![]() |
[10] |
R. M. Tudoran and A. G\^irban, On the completely integrable case of the Rössler system, J. Math. Phys., 53 (2012), 052701, 10 pp.
doi: 10.1063/1.4708621. |
[11] |
R. M. Tudoran,
Affine distributions on Riemannian manifolds with applications to dissipative dynamics, J. Geom. Phys., 92 (2015), 55-68.
doi: 10.1016/j.geomphys.2015.01.017. |
[12] |
R. M. Tudoran,
Asymptotic bp-stabilization of a given closed invariant set of a smooth dynamical system, J. Differential Equations, 267 (2019), 3768-3777.
doi: 10.1016/j.jde.2019.04.013. |
show all references
References:
[1] |
G.-I. Bischi, C. Mira and L. Gardini,
Unbounded sets of attraction, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10 (2000), 1437-1469.
doi: 10.1142/S0218127400000980. |
[2] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013.
doi: 10.1007/978-1-4614-4581-4. |
[3] |
B. Günther and J. Segal,
Every attractor of a flow on a manifold has the shape of a finite polyhedron, Proc. Amer. Math. Soc., 119 (1993), 321-329.
doi: 10.1090/S0002-9939-1993-1170545-4. |
[4] |
B. Günther,
Construction of differentiable flows with prescribed attractor, Topology Appl., 62 (1995), 87-91.
doi: 10.1016/0166-8641(94)00047-7. |
[5] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25. American Mathematical Society, Providence, 1988. |
[6] |
P. Hartman, Ordinary Differential Equations, Classics in Applied Mathematics, 38. SIAM, Philadelphia, PA, 2002.
doi: 10.1137/1.9780898719222. |
[7] |
J. M. Lee, Introduction to Smooth Manifolds, Second edition, Graduate Texts in Mathematics, 218. Springer, New York, 2013. |
[8] |
T. S. Ratiu, R. M. Tudoran, L. Sbano, E. Sousa Dias and G. Terra,
Chapter II: A crash course in geometric mechanics, London Math. Soc. Lecture Note Ser., Geometric mechanics and symmetry, Cambridge Univ. Press, Cambridge, 306 (2005), 23-156.
doi: 10.1017/CBO9780511526367.003. |
[9] |
J. C. Robinson, Dimensions, Embeddings, and Attractors, Cambridge Tracts in Mathematics, 186. Cambridge University Press, Cambridge, 2011.
![]() ![]() |
[10] |
R. M. Tudoran and A. G\^irban, On the completely integrable case of the Rössler system, J. Math. Phys., 53 (2012), 052701, 10 pp.
doi: 10.1063/1.4708621. |
[11] |
R. M. Tudoran,
Affine distributions on Riemannian manifolds with applications to dissipative dynamics, J. Geom. Phys., 92 (2015), 55-68.
doi: 10.1016/j.geomphys.2015.01.017. |
[12] |
R. M. Tudoran,
Asymptotic bp-stabilization of a given closed invariant set of a smooth dynamical system, J. Differential Equations, 267 (2019), 3768-3777.
doi: 10.1016/j.jde.2019.04.013. |
[1] |
Rovella Alvaro, Vilamajó Francesc, Romero Neptalí. Invariant manifolds for delay endomorphisms. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 35-50. doi: 10.3934/dcds.2001.7.35 |
[2] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[3] |
Hisayoshi Toyokawa. $\sigma$-finite invariant densities for eventually conservative Markov operators. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2641-2669. doi: 10.3934/dcds.2020144 |
[4] |
Sergio Grillo, Jerrold E. Marsden, Sujit Nair. Lyapunov constraints and global asymptotic stabilization. Journal of Geometric Mechanics, 2011, 3 (2) : 145-196. doi: 10.3934/jgm.2011.3.145 |
[5] |
José F. Alves, Davide Azevedo. Statistical properties of diffeomorphisms with weak invariant manifolds. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 1-41. doi: 10.3934/dcds.2016.36.1 |
[6] |
George Osipenko. Indestructibility of invariant locally non-unique manifolds. Discrete and Continuous Dynamical Systems, 1996, 2 (2) : 203-219. doi: 10.3934/dcds.1996.2.203 |
[7] |
Henk Broer, Aaron Hagen, Gert Vegter. Numerical approximation of normally hyperbolic invariant manifolds. Conference Publications, 2003, 2003 (Special) : 133-140. doi: 10.3934/proc.2003.2003.133 |
[8] |
Christopher K. R. T. Jones, Siu-Kei Tin. Generalized exchange lemmas and orbits heteroclinic to invariant manifolds. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 967-1023. doi: 10.3934/dcdss.2009.2.967 |
[9] |
Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Invariant manifolds as pullback attractors of nonautonomous differential equations. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 579-596. doi: 10.3934/dcds.2006.15.579 |
[10] |
Arturo Echeverría-Enríquez, Alberto Ibort, Miguel C. Muñoz-Lecanda, Narciso Román-Roy. Invariant forms and automorphisms of locally homogeneous multisymplectic manifolds. Journal of Geometric Mechanics, 2012, 4 (4) : 397-419. doi: 10.3934/jgm.2012.4.397 |
[11] |
Roberto Castelli. Efficient representation of invariant manifolds of periodic orbits in the CRTBP. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 563-586. doi: 10.3934/dcdsb.2018197 |
[12] |
Pablo Aguirre, Bernd Krauskopf, Hinke M. Osinga. Global invariant manifolds near a Shilnikov homoclinic bifurcation. Journal of Computational Dynamics, 2014, 1 (1) : 1-38. doi: 10.3934/jcd.2014.1.1 |
[13] |
Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4667-4704. doi: 10.3934/dcds.2021053 |
[14] |
Alexey Gorshkov. Stable invariant manifolds with application to control problems. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021040 |
[15] |
Thiago Ferraiol, Mauro Patrão, Lucas Seco. Jordan decomposition and dynamics on flag manifolds. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 923-947. doi: 10.3934/dcds.2010.26.923 |
[16] |
Xuemei Li, Zaijiu Shang. On the existence of invariant tori in non-conservative dynamical systems with degeneracy and finite differentiability. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4225-4257. doi: 10.3934/dcds.2019171 |
[17] |
Jun Shen, Kening Lu, Bixiang Wang. Invariant manifolds and foliations for random differential equations driven by colored noise. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6201-6246. doi: 10.3934/dcds.2020276 |
[18] |
I. Baldomá, Àlex Haro. One dimensional invariant manifolds of Gevrey type in real-analytic maps. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 295-322. doi: 10.3934/dcdsb.2008.10.295 |
[19] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[20] |
Maciej J. Capiński, Piotr Zgliczyński. Cone conditions and covering relations for topologically normally hyperbolic invariant manifolds. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 641-670. doi: 10.3934/dcds.2011.30.641 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]