
-
Previous Article
Mathematical analysis of a cloud resolving model including the ice microphysics
- DCDS Home
- This Issue
-
Next Article
Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations
A posteriori error estimates for self-similar solutions to the Euler equations
Mathematics Department, Pennsylvania State University, University Park, PA 16802, USA |
The main goal of this paper is to analyze a family of "simplest possible" initial data for which, as shown by numerical simulations, the incompressible Euler equations have multiple solutions. We take here a first step toward a rigorous validation of these numerical results. Namely, we consider the system of equations corresponding to a self-similar solution, restricted to a bounded domain with smooth boundary. Given an approximate solution obtained via a finite dimensional Galerkin method, we establish a posteriori error bounds on the distance between the numerical approximation and the exact solution having the same boundary data.
References:
[1] |
M. S. Berger, Nonlinearity and Functional Analysis, Lectures on Nonlinear Problems in Mathematical Analysis, Pure and Applied Mathematics, Academic Press, New York, 1977.
![]() ![]() |
[2] |
F. Bernicot and T. Hmidi,
On the global well-posedness for Euler equations with unbounded vorticity, Dyn. Partial Differ. Equ., 12 (2015), 127-155.
doi: 10.4310/DPDE.2015.v12.n2.a3. |
[3] |
S. C. Brenner and L. Ridgway Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, 15, Springer, New York, 2008.
doi: 10.1007/978-0-387-75934-0. |
[4] |
A. Bressan, Lecture Notes on Functional Analysis: With Applications to Linear Partial Differential Equations, Graduate Studies in Mathematics, 143, American Mathematical Society, Providence, RI, 2013. |
[5] |
A. Bressan and R. Murray, On self-similar solutions to the Euler equations, submitted. |
[6] |
P. Ciarlet and C. Mardare,
On the Newton-Kantorovich theorem, Anal. Appl. (Singap.), 10 (2012), 249-269.
doi: 10.1142/S0219530512500121. |
[7] |
P. Clément,
Approximation by finite element functions using local regularization, Rev. Francaise Automat. Informat. Rech. Opérationnelle Sér., 9 (1975), 77-84.
doi: 10.1051/m2an/197509R200771. |
[8] |
S. Daneri,
Cauchy problem for dissipative Hölder solutions to the incompressible Euler equations, Comm. Math. Phys., 329 (2014), 745-786.
doi: 10.1007/s00220-014-1973-5. |
[9] |
S. Daneri, E. Runa and L. Székelyhidi, Non-uniqueness for the Euler equations up to Onsager's critical exponent, work in progress. |
[10] |
S. Daneri and L. Székelyhidi,
Non-uniqueness and $h$-principle for Hölder-continuous weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 224 (2017), 471-514.
doi: 10.1007/s00205-017-1081-8. |
[11] |
C. De Lellis and L. Székelyhidi, The Euler equations as a differential inclusion, Ann. of Math. (2), 170 (2009), 1417-1436.
doi: 10.4007/annals.2009.170.1417. |
[12] |
C. De Lellis and L. Székelyhidi,
On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 195 (2010), 225-260.
doi: 10.1007/s00205-008-0201-x. |
[13] |
K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
doi: 10.1007/978-3-662-00547-7. |
[14] |
V. Elling,
Algebraic spiral solutions of 2d incompressible Euler, J. Differential Equations, 255 (2013), 3749-3787.
doi: 10.1016/j.jde.2013.07.021. |
[15] |
V. Elling,
Self-Similar 2d Euler solutions with mixed-sign vorticity, Comm. Math. Phys., 348 (2016), 27-68.
doi: 10.1007/s00220-016-2755-z. |
[16] |
V. Elling,
Algebraic spiral solutions of the 2d incompressible Euler equations, Bull. Braz. Math. Soc. (N.S.), 47 (2016), 323-334.
doi: 10.1007/s00574-016-0141-2. |
[17] |
L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/gsm/019. |
[18] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, 224, Springer-Verlag, Berlin, 2001.
doi: 10.1007/978-3-642-61798-0. |
[19] |
J. R. Kuttler and V. G. Sigillito,
Eigenvalues of the Laplacian in two dimensions, SIAM Rev., 26 (1984), 163-193.
doi: 10.1137/1026033. |
[20] |
C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, Applied Mathematical Sciences, 96, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-4284-0. |
[21] |
L. R. Scott and S. Zhang,
Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54 (1990), 483-493.
doi: 10.1090/S0025-5718-1990-1011446-7. |
[22] |
V. Scheffer,
An inviscid flow with compact support in space-time, J. Geom. Anal., 3 (1993), 343-401.
doi: 10.1007/BF02921318. |
[23] |
W. Shen, Matlab codes for the numerical simulation of the incompressible Euler equations., Available from: http://www.personal.psu.edu/wxs27/SimEuler/. |
[24] |
A. Shnirelman,
On the nonuniqueness of weak solution of the Euler equation, Comm. Pure Appl. Math., 50 (1997), 1261-1286.
doi: 10.1002/(SICI)1097-0312(199712)50:12<1261::AID-CPA3>3.0.CO;2-6. |
[25] |
M. Vishik, Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part Ⅰ and Ⅱ, preprint, arXiv: 1805.09426 and arXiv: 1805.09440. |
[26] |
V. Yudovich,
Non-stationary flow of an ideal incompressible liquid, Comp. Math. Math. Phys., 3 (1963), 1407-1457.
doi: 10.1016/0041-5553(63)90247-7. |
show all references
References:
[1] |
M. S. Berger, Nonlinearity and Functional Analysis, Lectures on Nonlinear Problems in Mathematical Analysis, Pure and Applied Mathematics, Academic Press, New York, 1977.
![]() ![]() |
[2] |
F. Bernicot and T. Hmidi,
On the global well-posedness for Euler equations with unbounded vorticity, Dyn. Partial Differ. Equ., 12 (2015), 127-155.
doi: 10.4310/DPDE.2015.v12.n2.a3. |
[3] |
S. C. Brenner and L. Ridgway Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, 15, Springer, New York, 2008.
doi: 10.1007/978-0-387-75934-0. |
[4] |
A. Bressan, Lecture Notes on Functional Analysis: With Applications to Linear Partial Differential Equations, Graduate Studies in Mathematics, 143, American Mathematical Society, Providence, RI, 2013. |
[5] |
A. Bressan and R. Murray, On self-similar solutions to the Euler equations, submitted. |
[6] |
P. Ciarlet and C. Mardare,
On the Newton-Kantorovich theorem, Anal. Appl. (Singap.), 10 (2012), 249-269.
doi: 10.1142/S0219530512500121. |
[7] |
P. Clément,
Approximation by finite element functions using local regularization, Rev. Francaise Automat. Informat. Rech. Opérationnelle Sér., 9 (1975), 77-84.
doi: 10.1051/m2an/197509R200771. |
[8] |
S. Daneri,
Cauchy problem for dissipative Hölder solutions to the incompressible Euler equations, Comm. Math. Phys., 329 (2014), 745-786.
doi: 10.1007/s00220-014-1973-5. |
[9] |
S. Daneri, E. Runa and L. Székelyhidi, Non-uniqueness for the Euler equations up to Onsager's critical exponent, work in progress. |
[10] |
S. Daneri and L. Székelyhidi,
Non-uniqueness and $h$-principle for Hölder-continuous weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 224 (2017), 471-514.
doi: 10.1007/s00205-017-1081-8. |
[11] |
C. De Lellis and L. Székelyhidi, The Euler equations as a differential inclusion, Ann. of Math. (2), 170 (2009), 1417-1436.
doi: 10.4007/annals.2009.170.1417. |
[12] |
C. De Lellis and L. Székelyhidi,
On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 195 (2010), 225-260.
doi: 10.1007/s00205-008-0201-x. |
[13] |
K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
doi: 10.1007/978-3-662-00547-7. |
[14] |
V. Elling,
Algebraic spiral solutions of 2d incompressible Euler, J. Differential Equations, 255 (2013), 3749-3787.
doi: 10.1016/j.jde.2013.07.021. |
[15] |
V. Elling,
Self-Similar 2d Euler solutions with mixed-sign vorticity, Comm. Math. Phys., 348 (2016), 27-68.
doi: 10.1007/s00220-016-2755-z. |
[16] |
V. Elling,
Algebraic spiral solutions of the 2d incompressible Euler equations, Bull. Braz. Math. Soc. (N.S.), 47 (2016), 323-334.
doi: 10.1007/s00574-016-0141-2. |
[17] |
L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/gsm/019. |
[18] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, 224, Springer-Verlag, Berlin, 2001.
doi: 10.1007/978-3-642-61798-0. |
[19] |
J. R. Kuttler and V. G. Sigillito,
Eigenvalues of the Laplacian in two dimensions, SIAM Rev., 26 (1984), 163-193.
doi: 10.1137/1026033. |
[20] |
C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, Applied Mathematical Sciences, 96, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-4284-0. |
[21] |
L. R. Scott and S. Zhang,
Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54 (1990), 483-493.
doi: 10.1090/S0025-5718-1990-1011446-7. |
[22] |
V. Scheffer,
An inviscid flow with compact support in space-time, J. Geom. Anal., 3 (1993), 343-401.
doi: 10.1007/BF02921318. |
[23] |
W. Shen, Matlab codes for the numerical simulation of the incompressible Euler equations., Available from: http://www.personal.psu.edu/wxs27/SimEuler/. |
[24] |
A. Shnirelman,
On the nonuniqueness of weak solution of the Euler equation, Comm. Pure Appl. Math., 50 (1997), 1261-1286.
doi: 10.1002/(SICI)1097-0312(199712)50:12<1261::AID-CPA3>3.0.CO;2-6. |
[25] |
M. Vishik, Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part Ⅰ and Ⅱ, preprint, arXiv: 1805.09426 and arXiv: 1805.09440. |
[26] |
V. Yudovich,
Non-stationary flow of an ideal incompressible liquid, Comp. Math. Math. Phys., 3 (1963), 1407-1457.
doi: 10.1016/0041-5553(63)90247-7. |





[1] |
Weronika Biedrzycka, Marta Tyran-Kamińska. Self-similar solutions of fragmentation equations revisited. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 13-27. doi: 10.3934/dcdsb.2018002 |
[2] |
Qiaolin He. Numerical simulation and self-similar analysis of singular solutions of Prandtl equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 101-116. doi: 10.3934/dcdsb.2010.13.101 |
[3] |
F. Berezovskaya, G. Karev. Bifurcations of self-similar solutions of the Fokker-Plank equations. Conference Publications, 2005, 2005 (Special) : 91-99. doi: 10.3934/proc.2005.2005.91 |
[4] |
Hyungjin Huh. Self-similar solutions to nonlinear Dirac equations and an application to nonuniqueness. Evolution Equations and Control Theory, 2018, 7 (1) : 53-60. doi: 10.3934/eect.2018003 |
[5] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[6] |
Dongho Chae, Kyungkeun Kang, Jihoon Lee. Notes on the asymptotically self-similar singularities in the Euler and the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1181-1193. doi: 10.3934/dcds.2009.25.1181 |
[7] |
Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic and Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801 |
[8] |
Hideo Kubo, Kotaro Tsugawa. Global solutions and self-similar solutions of the coupled system of semilinear wave equations in three space dimensions. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 471-482. doi: 10.3934/dcds.2003.9.471 |
[9] |
Jochen Merker, Aleš Matas. Positivity of self-similar solutions of doubly nonlinear reaction-diffusion equations. Conference Publications, 2015, 2015 (special) : 817-825. doi: 10.3934/proc.2015.0817 |
[10] |
Zoran Grujić. Regularity of forward-in-time self-similar solutions to the 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 837-843. doi: 10.3934/dcds.2006.14.837 |
[11] |
Kin Ming Hui. Existence of self-similar solutions of the inverse mean curvature flow. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 863-880. doi: 10.3934/dcds.2019036 |
[12] |
Bendong Lou. Self-similar solutions in a sector for a quasilinear parabolic equation. Networks and Heterogeneous Media, 2012, 7 (4) : 857-879. doi: 10.3934/nhm.2012.7.857 |
[13] |
Shota Sato, Eiji Yanagida. Singular backward self-similar solutions of a semilinear parabolic equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 897-906. doi: 10.3934/dcdss.2011.4.897 |
[14] |
Marek Fila, Michael Winkler, Eiji Yanagida. Convergence to self-similar solutions for a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 703-716. doi: 10.3934/dcds.2008.21.703 |
[15] |
K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure and Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51 |
[16] |
Meiyue Jiang, Juncheng Wei. $2\pi$-Periodic self-similar solutions for the anisotropic affine curve shortening problem II. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 785-803. doi: 10.3934/dcds.2016.36.785 |
[17] |
Adrien Blanchet, Philippe Laurençot. Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion. Communications on Pure and Applied Analysis, 2012, 11 (1) : 47-60. doi: 10.3934/cpaa.2012.11.47 |
[18] |
Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4823-4846. doi: 10.3934/dcds.2021059 |
[19] |
Rostislav Grigorchuk, Volodymyr Nekrashevych. Self-similar groups, operator algebras and Schur complement. Journal of Modern Dynamics, 2007, 1 (3) : 323-370. doi: 10.3934/jmd.2007.1.323 |
[20] |
Christoph Bandt, Helena PeÑa. Polynomial approximation of self-similar measures and the spectrum of the transfer operator. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4611-4623. doi: 10.3934/dcds.2017198 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]