\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Indefinite nonlinear diffusion problem in population genetics

Abstract Full Text(HTML) Related Papers Cited by
  • We study the following Neumann problem in one dimension,

    $ \left\{ {\begin{array}{*{20}{l}}\begin{array}{l}{u_t} = du'' + g(x){u^2}(1 - u)\quad {\rm{in}}\quad (0,1) \times (0,\infty ),\;\\0 \le u \le 1\quad {\rm{in}}\quad (0,1) \times (0,\infty ),\;\\u'(0,t) = u'(1,t) = 0\quad {\rm{in}}\quad (0,\infty ),\end{array}\end{array}} \right.$

    where $ g $ changes sign in $ (0, 1) $. This equation models the "complete dominance" case in population genetics of two alleles. It is known that this equation has a nontrivial stable steady state $ U_d $ for $ d $ sufficiently small. We show that $ U_d $ is a unique nontrivial steady state under a condition $ \int_{0}^1\, g(x)\, dx\geq 0 $ and some other additional condition.

    Mathematics Subject Classification: 35J25, 35B25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] Y. Lou and T. Nagylaki, A semilinear parabolic system for migration and selection in population gentics, J. Differential Equations, 181 (2002), 388-418.  doi: 10.1006/jdeq.2001.4086.
    [2] Y. LouT. Nagylaki and W.-M. Ni, An introduction to migration-selection PDE models, Discrete Contin. Dyn. Syst., 33 (2013), 4349-4373.  doi: 10.3934/dcds.2013.33.4349.
    [3] Y. LouW.-M. Ni and L. Su, An indefinite nonlinear diffusion problem in population genetics. Ⅱ. Stability and multiplicity, Discrete Contin. Dyn. Syst., 27 (2010), 643-655.  doi: 10.3934/dcds.2010.27.643.
    [4] T. Nagylaki, Conditions for the existence of clines, Genetics, 80 (1975), 595-615. 
    [5] T. Nagylaki, Polymorphism in multiallelic migration-selection models with dominance, Theoret. Population Biol., 75 (2009), 239-259. doi: 10.1016/j.tpb.2009.01.004.
    [6] T. Nagylaki and Y. Lou, The dynamics of migration-selection models, in "Tutorials in Mathematical Biosciences. IV, Lecture Notes in Math., 1922, Springer, Berlin, 2008,117–170. doi: 10.1007/978-3-540-74331-6_4.
    [7] K. NakashimaW.-M. Ni and L. Su, An indefinite nonlinear diffusion problem in population genetics. Ⅰ. Existence, Discrete Contin. Dyn. Syst., 27 (2010), 617-641.  doi: 10.3934/dcds.2010.27.617.
    [8] K. Nakashima, The uniqueness of indefinite nonlinear diffusion problem in population genetics, part Ⅰ, J. Differential Equations, 261 (2016), 6233-6282.  doi: 10.1016/j.jde.2016.08.041.
    [9] K. Nakashima, The uniqueness of an indefinite nonlinear diffusion problem in population genetics, part Ⅱ, J. Differential Equations, 264 (2018), 1946-1983.  doi: 10.1016/j.jde.2017.10.014.
    [10] K. Nakashima, Multiple existence of indefinite nonlinear diffusion problem in population genetics, J. Differential Equations, work in progress. doi: 10.1016/j.jde.2019.11.082.
  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views(820) PDF downloads(237) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return