
-
Previous Article
Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation
- DCDS Home
- This Issue
-
Next Article
Asymmetric dispersal and evolutional selection in two-patch system
Hysteresis-driven pattern formation in reaction-diffusion-ODE systems
1. | Institute of Applied Mathematics and Bioquant, Heidelberg University, Heidelberg, 69120, Germany |
2. | Institute of Applied Mathematics, Bioquant and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, 69120, Germany |
3. | Institute for Mathematical Sciences, Renmin University of China, Beijing 100872, China |
4. | Mathematical Institute, Tohoku University, Sendai, 980-8578, Japan |
The paper is devoted to analysis of far-from-equilibrium pattern formation in a system of a reaction-diffusion equation and an ordinary differential equation (ODE). Such systems arise in modeling of interactions between cellular processes and diffusing growth factors. Pattern formation results from hysteresis in the dependence of the quasi-stationary solution of the ODE on the diffusive component. Bistability alone, without hysteresis, does not result in stable patterns. We provide a systematic description of the hysteresis-driven stationary solutions, which may be monotone, periodic or irregular. We prove existence of infinitely many stationary solutions with jump discontinuity and their asymptotic stability for a certain class of reaction-diffusion-ODE systems. Nonlinear stability is proved using direct estimates of the model nonlinearities and properties of the strongly continuous diffusion semigroup.
References:
[1] |
D. Angeli, J. E. Ferrell and E. D. Sontag, Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems, PNAS, 101 (2004), 1822–1827.
doi: 10.1073/pnas.0308265100. |
[2] |
V. I. Arnold, Mathematical Methods of Classical Mechanics, Second edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4757-2063-1. |
[3] |
D. G. Aronson, A. Tesei and H. Weinberger,
A density-dependent diffusion system with stable discontinuous stationary solutions, Ann. Mat. Pura Appl., 152 (1988), 259-280.
doi: 10.1007/BF01766153. |
[4] |
J. E. Ferrell and W. Xiong,
Bistability in cell signaling: How to make continuos processes discontinous, and reversible processes irreversible, Chaos, 11 (2001), 227-236.
doi: 10.1063/1.1349894. |
[5] |
T. Gregor, E. F. Wieschaus, A. P. McGregor, W. Bialek and D. W. Tank,
Stability and nuclear dynamics of the bicoid morphogen gradient, Cell, 130 (2007), 141-152.
doi: 10.1016/j.cell.2007.05.026. |
[6] |
S. Härting, A. Marciniak-Czochra and I. Takagi,
Stable patterns with jump discontinuity in systems with Turing instability and hysteresis, Discrete Contin. Dyn. Syst. Ser. A., 37 (2017), 757-800.
doi: 10.3934/dcds.2017032. |
[7] |
S. Härting and A. Marciniak-Czochra,
Spike patterns in a reaction-diffusion-ode model with Turing instability, Math. Meth. Appl. Sci., 37 (2014), 1377-1391.
|
[8] |
S. Hock, Y. Ng, J. Hasenauer, D. Wittmann, D. Lutter, D. Trümbach, W. Wurst, N. Prakash and F. J. Theis, Sharpening of expression domains induced by transcription and microRNA regulation within a spatio-temporal model of mid-hindbrain boundary formation, BMC Syst. Biol., 7 (2013), 48.
doi: 10.1186/1752-0509-7-48. |
[9] |
J. Jaros and T. Kusano,
A picone type identity for second order half-linear differential equations, Acta Math. Univ. Comenian, 68 (1999), 137-151.
|
[10] |
V. Klika, R. Baker, D. Headon and E. Gaffney,
The influence of receptor-mediated interactions on reaction-diffusion mechanisms of cellular self-organization, Bulletin of Mathematical Biology, 74 (2012), 935-957.
doi: 10.1007/s11538-011-9699-4. |
[11] |
S. Kondo and T. Miura,
Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329 (2010), 1616-1620.
doi: 10.1126/science.1179047. |
[12] |
K. Korvasová, E. A. Gaffney, P. K. Maini, M. A. Ferreira and V. Klika,
Investigating the turing conditions for diffusion-driven instability in the presence of a binding immobile substrate, J. Theor. Biol., 367 (2015), 286-295.
doi: 10.1016/j.jtbi.2014.11.024. |
[13] |
Y. Li, A. Marciniak-Czochra, I. Takagi and B. Wu,
Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis, Hiroshima Math. J., 47 (2017), 217-247.
doi: 10.32917/hmj/1499392826. |
[14] |
W. S. Loud, "Periodic solutions of $x'' +cx' +g(x) = \epsilon f(t)''$, Mem. Amer. Math. Soc., 31 1959, 58 pp. |
[15] |
A. Marasco and et al.,
Vegetation pattern formation due to interactions between water availability and toxicity in plant-soil feedback, Bull. Math. Biol., 76 (2014), 2866-2883.
doi: 10.1007/s11538-014-0036-6. |
[16] |
A. Marciniak-Czochra,
Receptor-based models with diffusion-driven instability for pattern formation in hydra, J. Biol. Sys., 11 (2003), 293-324.
doi: 10.1142/S0218339003000889. |
[17] |
A. Marciniak-Czochra,
Receptor-based models with hysteresis for pattern formation in hydra, Math. Biosci., 199 (2006), 97-119.
doi: 10.1016/j.mbs.2005.10.004. |
[18] |
A. Marciniak-Czochra,
Strong two-scale convergence and corrector result for the receptor-based model of the intercellular communication, IMA J. Appl. Math., 77 (2012), 855-868.
doi: 10.1093/imamat/hxs052. |
[19] |
A. Marciniak-Czochra, G. Karch and K. Suzuki, Instability of Turing patterns in reaction-diffusion-ODE systems, J. Math. Biol. 74 (2017), 583-618.
doi: 10.1007/s00285-016-1035-z. |
[20] |
A. Marciniak-Czochra, G. Karch and K. Suzuki,
Unstable patterns in reaction-diffusion model of early carcinogenesis, J. Math. Pures Appl., 99 (2013), 509-543.
doi: 10.1016/j.matpur.2012.09.011. |
[21] |
A. Marciniak-Czochra and M. Kimmel,
Modeling of early lung cancer progression: Influence of growth factor production and cooperation between partially transformed cells, Math. Models Methods Appl. Sci., 17 (2007), 1693-1719.
doi: 10.1142/S0218202507002443. |
[22] |
A. Marciniak-Czochra, M. Nakayama and I. Takagi,
Pattern formation in a diffusion-ODE model with hysteresis, Differential Integral Equations, 28 (2015), 655-694.
|
[23] |
A. Marciniak-Czochra and M. Ptashnyk,
Derivation of a macroscopic receptor-based model using homogenization techniques., SIAM J. Math. Anal., 40 (2008), 215-237.
doi: 10.1137/050645269. |
[24] |
M. Mimura, M. Tabata and Y. Hosono,
Multiple solutions of two-point boundary value problems of Neumann type with a small parameter, SIAM J. Math. Anal., 11 (1980), 613-631.
doi: 10.1137/0511057. |
[25] |
C. Niehrs, The Spemann organizer and embryonic head induction, EMBO J., 20 (2001), 631-637. Google Scholar |
[26] |
K. Pham, A. Chauviere, H. Hatzikirou, X. Li, H.M.. Byrne, V. Cristini and J. Lowengrub,
Density-dependent quiescence in glioma invasion: instability in a simple reaction-diffusion model for the migration/proliferation dichotomy,, J. Biol. Dyn., 6 (2012), 54-71.
doi: 10.1080/17513758.2011.590610. |
[27] |
F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Mathematics, 1072, Springer, 1984.
doi: 10.1007/BFb0099278. |
[28] |
R. Schaaf, Global Solution Branches of Two Point Boundary Value Problems, Lecture Notes in Mathematics, 1458, Springer, 1990.
doi: 10.1007/BFb0098346. |
[29] |
J. Smoller, Shock Waves and Reaction-Diffusion Equations, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, 258, Springer, New York; Heidelberg; Berlin, 1983. |
[30] |
A. M. Turing,
The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, 237 (1952), 37-72.
doi: 10.1098/rstb.1952.0012. |
[31] |
D. M. Umulis, M. Serpe, M. B. O'Connor and H. G. Othmer,
Robust, bistable patterning of the dorsal surface of the Drosophila embryo,, Proc. Nat. Ac. Sci., 103 (2006), 11613-11618.
doi: 10.1073/pnas.0510398103. |
show all references
References:
[1] |
D. Angeli, J. E. Ferrell and E. D. Sontag, Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems, PNAS, 101 (2004), 1822–1827.
doi: 10.1073/pnas.0308265100. |
[2] |
V. I. Arnold, Mathematical Methods of Classical Mechanics, Second edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4757-2063-1. |
[3] |
D. G. Aronson, A. Tesei and H. Weinberger,
A density-dependent diffusion system with stable discontinuous stationary solutions, Ann. Mat. Pura Appl., 152 (1988), 259-280.
doi: 10.1007/BF01766153. |
[4] |
J. E. Ferrell and W. Xiong,
Bistability in cell signaling: How to make continuos processes discontinous, and reversible processes irreversible, Chaos, 11 (2001), 227-236.
doi: 10.1063/1.1349894. |
[5] |
T. Gregor, E. F. Wieschaus, A. P. McGregor, W. Bialek and D. W. Tank,
Stability and nuclear dynamics of the bicoid morphogen gradient, Cell, 130 (2007), 141-152.
doi: 10.1016/j.cell.2007.05.026. |
[6] |
S. Härting, A. Marciniak-Czochra and I. Takagi,
Stable patterns with jump discontinuity in systems with Turing instability and hysteresis, Discrete Contin. Dyn. Syst. Ser. A., 37 (2017), 757-800.
doi: 10.3934/dcds.2017032. |
[7] |
S. Härting and A. Marciniak-Czochra,
Spike patterns in a reaction-diffusion-ode model with Turing instability, Math. Meth. Appl. Sci., 37 (2014), 1377-1391.
|
[8] |
S. Hock, Y. Ng, J. Hasenauer, D. Wittmann, D. Lutter, D. Trümbach, W. Wurst, N. Prakash and F. J. Theis, Sharpening of expression domains induced by transcription and microRNA regulation within a spatio-temporal model of mid-hindbrain boundary formation, BMC Syst. Biol., 7 (2013), 48.
doi: 10.1186/1752-0509-7-48. |
[9] |
J. Jaros and T. Kusano,
A picone type identity for second order half-linear differential equations, Acta Math. Univ. Comenian, 68 (1999), 137-151.
|
[10] |
V. Klika, R. Baker, D. Headon and E. Gaffney,
The influence of receptor-mediated interactions on reaction-diffusion mechanisms of cellular self-organization, Bulletin of Mathematical Biology, 74 (2012), 935-957.
doi: 10.1007/s11538-011-9699-4. |
[11] |
S. Kondo and T. Miura,
Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329 (2010), 1616-1620.
doi: 10.1126/science.1179047. |
[12] |
K. Korvasová, E. A. Gaffney, P. K. Maini, M. A. Ferreira and V. Klika,
Investigating the turing conditions for diffusion-driven instability in the presence of a binding immobile substrate, J. Theor. Biol., 367 (2015), 286-295.
doi: 10.1016/j.jtbi.2014.11.024. |
[13] |
Y. Li, A. Marciniak-Czochra, I. Takagi and B. Wu,
Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis, Hiroshima Math. J., 47 (2017), 217-247.
doi: 10.32917/hmj/1499392826. |
[14] |
W. S. Loud, "Periodic solutions of $x'' +cx' +g(x) = \epsilon f(t)''$, Mem. Amer. Math. Soc., 31 1959, 58 pp. |
[15] |
A. Marasco and et al.,
Vegetation pattern formation due to interactions between water availability and toxicity in plant-soil feedback, Bull. Math. Biol., 76 (2014), 2866-2883.
doi: 10.1007/s11538-014-0036-6. |
[16] |
A. Marciniak-Czochra,
Receptor-based models with diffusion-driven instability for pattern formation in hydra, J. Biol. Sys., 11 (2003), 293-324.
doi: 10.1142/S0218339003000889. |
[17] |
A. Marciniak-Czochra,
Receptor-based models with hysteresis for pattern formation in hydra, Math. Biosci., 199 (2006), 97-119.
doi: 10.1016/j.mbs.2005.10.004. |
[18] |
A. Marciniak-Czochra,
Strong two-scale convergence and corrector result for the receptor-based model of the intercellular communication, IMA J. Appl. Math., 77 (2012), 855-868.
doi: 10.1093/imamat/hxs052. |
[19] |
A. Marciniak-Czochra, G. Karch and K. Suzuki, Instability of Turing patterns in reaction-diffusion-ODE systems, J. Math. Biol. 74 (2017), 583-618.
doi: 10.1007/s00285-016-1035-z. |
[20] |
A. Marciniak-Czochra, G. Karch and K. Suzuki,
Unstable patterns in reaction-diffusion model of early carcinogenesis, J. Math. Pures Appl., 99 (2013), 509-543.
doi: 10.1016/j.matpur.2012.09.011. |
[21] |
A. Marciniak-Czochra and M. Kimmel,
Modeling of early lung cancer progression: Influence of growth factor production and cooperation between partially transformed cells, Math. Models Methods Appl. Sci., 17 (2007), 1693-1719.
doi: 10.1142/S0218202507002443. |
[22] |
A. Marciniak-Czochra, M. Nakayama and I. Takagi,
Pattern formation in a diffusion-ODE model with hysteresis, Differential Integral Equations, 28 (2015), 655-694.
|
[23] |
A. Marciniak-Czochra and M. Ptashnyk,
Derivation of a macroscopic receptor-based model using homogenization techniques., SIAM J. Math. Anal., 40 (2008), 215-237.
doi: 10.1137/050645269. |
[24] |
M. Mimura, M. Tabata and Y. Hosono,
Multiple solutions of two-point boundary value problems of Neumann type with a small parameter, SIAM J. Math. Anal., 11 (1980), 613-631.
doi: 10.1137/0511057. |
[25] |
C. Niehrs, The Spemann organizer and embryonic head induction, EMBO J., 20 (2001), 631-637. Google Scholar |
[26] |
K. Pham, A. Chauviere, H. Hatzikirou, X. Li, H.M.. Byrne, V. Cristini and J. Lowengrub,
Density-dependent quiescence in glioma invasion: instability in a simple reaction-diffusion model for the migration/proliferation dichotomy,, J. Biol. Dyn., 6 (2012), 54-71.
doi: 10.1080/17513758.2011.590610. |
[27] |
F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Mathematics, 1072, Springer, 1984.
doi: 10.1007/BFb0099278. |
[28] |
R. Schaaf, Global Solution Branches of Two Point Boundary Value Problems, Lecture Notes in Mathematics, 1458, Springer, 1990.
doi: 10.1007/BFb0098346. |
[29] |
J. Smoller, Shock Waves and Reaction-Diffusion Equations, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, 258, Springer, New York; Heidelberg; Berlin, 1983. |
[30] |
A. M. Turing,
The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, 237 (1952), 37-72.
doi: 10.1098/rstb.1952.0012. |
[31] |
D. M. Umulis, M. Serpe, M. B. O'Connor and H. G. Othmer,
Robust, bistable patterning of the dorsal surface of the Drosophila embryo,, Proc. Nat. Ac. Sci., 103 (2006), 11613-11618.
doi: 10.1073/pnas.0510398103. |








[1] |
Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042 |
[2] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[3] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[4] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[5] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[6] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[7] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[8] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[9] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[10] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[11] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[12] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[13] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[14] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[15] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020210 |
[16] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
[17] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[18] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[19] |
Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511 |
[20] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]