-
Previous Article
A new type of non-landing exponential rays
- DCDS Home
- This Issue
-
Next Article
On the normalized ground states for the Kawahara equation and a fourth order NLS
Synchronisation of almost all trajectories of a random dynamical system
Department of Mathematics, University of Exeter, Exeter, EX4 4QF, United Kingdom |
It has been shown by Le Jan that, given a memoryless-noise random dynamical system together with an ergodic distribution for the associated Markov transition probabilities, if the support of the ergodic distribution admits locally asymptotically stable trajectories, then there is a random attracting set consisting of finitely many points, whose basin of forward-time attraction includes a random full measure open set. In this paper, we present necessary and sufficient conditions for this attracting set to be a singleton. Our result does not require the state space to be compact, but holds on general Lusin metric spaces (in both discrete and continuous time).
References:
[1] |
V. A. Antonov, Modeling of processes of cyclic evolution type. Synchronization by a random signal, Vestnik Leningrad. Univ. Mat. Mekh. Astronom., 1984, 67–76. |
[2] |
L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-12878-7. |
[3] |
P. H. Baxendale, Statistical equilibrium and two-point motion for a stochastic flow of diffeomorphisms, in Spatial Stochastic Processes, Progr. Probab., 19, Birkhäuser Boston, Boston, MA, 1991,189–218.
doi: 10.1007/978-1-4612-0451-0_9. |
[4] |
P. Berti, L. Pratelli and P. Rigo,
Almost sure weak convergence of random probability measures, Stochastics, 78 (2006), 91-97.
doi: 10.1080/17442500600745359. |
[5] |
M. Cranston, B. Gess and M. Scheutzow,
Weak synchronization for isotropic flows, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3003-3014.
doi: 10.3934/dcdsb.2016084. |
[6] |
H. Crauel, Random Probability Measures on Polish Spaces, Stochastics Monographs, 11, Taylor & Francis, London, 2002. |
[7] |
H. Crauel and F. Flandoli,
Additive noise destroys a pitchfork bifurcation, J. Dynam. Differential Equations, 10 (1998), 259-274.
doi: 10.1023/A:1022665916629. |
[8] |
F. Flandoli, B. Gess and M. Scheutzow,
Synchronization by noise, Probab. Theory Related Fields, 168 (2017), 511-556.
doi: 10.1007/s00440-016-0716-2. |
[9] |
F. Flandoli, B. Gess and M. Scheutzow,
Synchronization by noise for order-preserving random dynamical systems, Ann. Probab., 45 (2017), 1325-1350.
doi: 10.1214/16-AOP1088. |
[10] |
D. H. Fremlin, Measure Theory. 4: Topological Measure Spaces, Torres Fremlin, Colchester, 2006. |
[11] |
A. J. Homburg, Synchronization in iterated function systems, preprint, arXiv: 1303.6054v1. |
[12] |
T. Kaijser,
On stochastic perturbations of iterations of circle maps, Phys. D, 68 (1993), 201-231.
doi: 10.1016/0167-2789(93)90081-B. |
[13] |
Y. Kifer, Ergodic Theory of Random Transformations, Progress in Probability and Statistics, 10, Birkhäuser Boston, Inc., Boston, MA, 1986.
doi: 10.1007/978-1-4684-9175-3. |
[14] |
S. Kuksin and A. Shirikyan, Mathematics of Two-Dimensional Turbulence, Cambridge Tracts in Mathematics, 194, Cambridge University Press, Cambridge, 2012.
doi: 10.1017/CBO9781139137119.![]() ![]() ![]() |
[15] |
Y. Le Jan,
\'{E}quilibre statistique pour les produits de difféomorphismes aléatoires indépendants, Ann. Inst. H. Poincaré Probab. Statist., 23 (1987), 111-120.
|
[16] |
D. Malicet,
Random walks on Homeo(S1), Commun. Math. Phys., 356 (2017), 1083-1116.
doi: 10.1007/s00220-017-2996-5. |
[17] |
J. Newman, Ergodic theory for semigroups of Markov kernels, 2015. Available from: http://wwwf.imperial.ac.uk/ jmn07/Ergodic_Theory_for_Semigroups_of_Markov_Kernels.pdf. |
[18] |
J. Newman, Synchronisation in invertible random dynamical systems on the circle, preprint, arXiv: 1502.07618v2. |
[19] |
J. Newman,
Necessary and sufficient conditions for stable synchronization in random dynamical systems, Ergodic Theory Dynam. Systems, 38 (2018), 1857-1875.
doi: 10.1017/etds.2016.109. |
[20] |
A. S. Pikovskii,
Synchronization and stochastization of array of self-excited oscillators by external noise, Radiophys. Quantum Electron., 27 (1984), 390-395.
doi: 10.1007/BF01044784. |
[21] |
S. M. Srivastava, A Course on Borel Sets, Graduate Texts in Mathematics, 180, Springer-Verlag, New York, 1998.
doi: 10.1007/978-3-642-85473-6. |
[22] |
R. Toral, C. R. Mirasso, E. Hernández-García and O. Piro,
Analytical and numerical studies of noise-induced synchronization of chaotic systems, Chaos, 11 (2001), 665-673.
doi: 10.1063/1.1386397. |
show all references
References:
[1] |
V. A. Antonov, Modeling of processes of cyclic evolution type. Synchronization by a random signal, Vestnik Leningrad. Univ. Mat. Mekh. Astronom., 1984, 67–76. |
[2] |
L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-12878-7. |
[3] |
P. H. Baxendale, Statistical equilibrium and two-point motion for a stochastic flow of diffeomorphisms, in Spatial Stochastic Processes, Progr. Probab., 19, Birkhäuser Boston, Boston, MA, 1991,189–218.
doi: 10.1007/978-1-4612-0451-0_9. |
[4] |
P. Berti, L. Pratelli and P. Rigo,
Almost sure weak convergence of random probability measures, Stochastics, 78 (2006), 91-97.
doi: 10.1080/17442500600745359. |
[5] |
M. Cranston, B. Gess and M. Scheutzow,
Weak synchronization for isotropic flows, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3003-3014.
doi: 10.3934/dcdsb.2016084. |
[6] |
H. Crauel, Random Probability Measures on Polish Spaces, Stochastics Monographs, 11, Taylor & Francis, London, 2002. |
[7] |
H. Crauel and F. Flandoli,
Additive noise destroys a pitchfork bifurcation, J. Dynam. Differential Equations, 10 (1998), 259-274.
doi: 10.1023/A:1022665916629. |
[8] |
F. Flandoli, B. Gess and M. Scheutzow,
Synchronization by noise, Probab. Theory Related Fields, 168 (2017), 511-556.
doi: 10.1007/s00440-016-0716-2. |
[9] |
F. Flandoli, B. Gess and M. Scheutzow,
Synchronization by noise for order-preserving random dynamical systems, Ann. Probab., 45 (2017), 1325-1350.
doi: 10.1214/16-AOP1088. |
[10] |
D. H. Fremlin, Measure Theory. 4: Topological Measure Spaces, Torres Fremlin, Colchester, 2006. |
[11] |
A. J. Homburg, Synchronization in iterated function systems, preprint, arXiv: 1303.6054v1. |
[12] |
T. Kaijser,
On stochastic perturbations of iterations of circle maps, Phys. D, 68 (1993), 201-231.
doi: 10.1016/0167-2789(93)90081-B. |
[13] |
Y. Kifer, Ergodic Theory of Random Transformations, Progress in Probability and Statistics, 10, Birkhäuser Boston, Inc., Boston, MA, 1986.
doi: 10.1007/978-1-4684-9175-3. |
[14] |
S. Kuksin and A. Shirikyan, Mathematics of Two-Dimensional Turbulence, Cambridge Tracts in Mathematics, 194, Cambridge University Press, Cambridge, 2012.
doi: 10.1017/CBO9781139137119.![]() ![]() ![]() |
[15] |
Y. Le Jan,
\'{E}quilibre statistique pour les produits de difféomorphismes aléatoires indépendants, Ann. Inst. H. Poincaré Probab. Statist., 23 (1987), 111-120.
|
[16] |
D. Malicet,
Random walks on Homeo(S1), Commun. Math. Phys., 356 (2017), 1083-1116.
doi: 10.1007/s00220-017-2996-5. |
[17] |
J. Newman, Ergodic theory for semigroups of Markov kernels, 2015. Available from: http://wwwf.imperial.ac.uk/ jmn07/Ergodic_Theory_for_Semigroups_of_Markov_Kernels.pdf. |
[18] |
J. Newman, Synchronisation in invertible random dynamical systems on the circle, preprint, arXiv: 1502.07618v2. |
[19] |
J. Newman,
Necessary and sufficient conditions for stable synchronization in random dynamical systems, Ergodic Theory Dynam. Systems, 38 (2018), 1857-1875.
doi: 10.1017/etds.2016.109. |
[20] |
A. S. Pikovskii,
Synchronization and stochastization of array of self-excited oscillators by external noise, Radiophys. Quantum Electron., 27 (1984), 390-395.
doi: 10.1007/BF01044784. |
[21] |
S. M. Srivastava, A Course on Borel Sets, Graduate Texts in Mathematics, 180, Springer-Verlag, New York, 1998.
doi: 10.1007/978-3-642-85473-6. |
[22] |
R. Toral, C. R. Mirasso, E. Hernández-García and O. Piro,
Analytical and numerical studies of noise-induced synchronization of chaotic systems, Chaos, 11 (2001), 665-673.
doi: 10.1063/1.1386397. |
[1] |
Ivan Werner. Equilibrium states and invariant measures for random dynamical systems. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1285-1326. doi: 10.3934/dcds.2015.35.1285 |
[2] |
Ji Li, Kening Lu, Peter W. Bates. Invariant foliations for random dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3639-3666. doi: 10.3934/dcds.2014.34.3639 |
[3] |
Zhiming Li, Lin Shu. The metric entropy of random dynamical systems in a Hilbert space: Characterization of invariant measures satisfying Pesin's entropy formula. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4123-4155. doi: 10.3934/dcds.2013.33.4123 |
[4] |
Wael Bahsoun, Paweł Góra. SRB measures for certain Markov processes. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 17-37. doi: 10.3934/dcds.2011.30.17 |
[5] |
Xin Li, Wenxian Shen, Chunyou Sun. Invariant measures for complex-valued dissipative dynamical systems and applications. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2427-2446. doi: 10.3934/dcdsb.2017124 |
[6] |
Grzegorz Łukaszewicz, James C. Robinson. Invariant measures for non-autonomous dissipative dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4211-4222. doi: 10.3934/dcds.2014.34.4211 |
[7] |
Siniša Slijepčević. Stability of invariant measures. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1345-1363. doi: 10.3934/dcds.2009.24.1345 |
[8] |
Giovanni Russo, Fabian Wirth. Matrix measures, stability and contraction theory for dynamical systems on time scales. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3345-3374. doi: 10.3934/dcdsb.2021188 |
[9] |
Anhui Gu. Asymptotic behavior of random lattice dynamical systems and their Wong-Zakai approximations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5737-5767. doi: 10.3934/dcdsb.2019104 |
[10] |
Mario Roy, Mariusz Urbański. Random graph directed Markov systems. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 261-298. doi: 10.3934/dcds.2011.30.261 |
[11] |
Lianfa He, Hongwen Zheng, Yujun Zhu. Shadowing in random dynamical systems. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 355-362. doi: 10.3934/dcds.2005.12.355 |
[12] |
Philippe Marie, Jérôme Rousseau. Recurrence for random dynamical systems. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 1-16. doi: 10.3934/dcds.2011.30.1 |
[13] |
Michael Schönlein. Asymptotic stability and smooth Lyapunov functions for a class of abstract dynamical systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4053-4069. doi: 10.3934/dcds.2017172 |
[14] |
Xiangnan He, Wenlian Lu, Tianping Chen. On transverse stability of random dynamical system. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 701-721. doi: 10.3934/dcds.2013.33.701 |
[15] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[16] |
Fawwaz Batayneh, Cecilia González-Tokman. On the number of invariant measures for random expanding maps in higher dimensions. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5887-5914. doi: 10.3934/dcds.2021100 |
[17] |
Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226 |
[18] |
Victor Magron, Marcelo Forets, Didier Henrion. Semidefinite approximations of invariant measures for polynomial systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6745-6770. doi: 10.3934/dcdsb.2019165 |
[19] |
Peter E. Kloeden, Victor Kozyakin. Asymptotic behaviour of random tridiagonal Markov chains in biological applications. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 453-465. doi: 10.3934/dcdsb.2013.18.453 |
[20] |
Yujun Zhu. Preimage entropy for random dynamical systems. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 829-851. doi: 10.3934/dcds.2007.18.829 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]