In this article, we consider the Schrödinger flow of maps from two dimensional hyperbolic space $ {{\mathbb{H}}}^2 $ to sphere $ {{\mathbb{S}}}^2 $. First, we prove the local existence and uniqueness of Schrödinger flow for initial data $ u_0\in\mathbf{H}^3 $ using an approximation scheme and parallel transport introduced by McGahagan [
Citation: |
[1] |
J.-P. Anker and V. Pierfelice, Nonlinear Schrödinger equation on real hyperbolic spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1853-1869.
doi: 10.1016/j.anihpc.2009.01.009.![]() ![]() ![]() |
[2] |
V. Banica, The Nonlinear Schrödinger equation on hyperbolic space, Comm. Partial Differential Equations, 32 (2007), 1643-1677.
doi: 10.1080/03605300600854332.![]() ![]() ![]() |
[3] |
I. Bejenaru, Global results for Schrödinger maps in dimensions $n\geq3$, Comm. Partial Differential Equations, 33 (2008), 451-477.
doi: 10.1080/03605300801895225.![]() ![]() ![]() |
[4] |
I. Bejenaru, A. D. Ionescu and C. E. Kenig, Global existence and uniqueness of Schrödinger maps in dimensions $d\geq 4$, Adv. Math., 215 (2007), 263-291.
doi: 10.1016/j.aim.2007.04.009.![]() ![]() ![]() |
[5] |
I. Bejenaru, A. D. Ionescu, C. E. Kenig and D. Tataru, Global Schrödinger maps in dimensions $d\geq 2$: Small data in the critical Sobolev spaces, Ann. of Math., 173 (2011), 1443-1506.
doi: 10.4007/annals.2011.173.3.5.![]() ![]() ![]() |
[6] |
I. Bejenaru, A. D. Ionescu, C. E. Kenig and D. Tataru, Equivariant Schrödinger maps in two spatial dimensions, Duke Math. J., 162 (2013), 1967-2025.
doi: 10.1215/00127094-2293611.![]() ![]() ![]() |
[7] |
I. Bejenaru, A. D. Ionescu, C. E. Kenig and D. Tataru, Equivariant Schrödinger maps in two spatial dimensions: The $\Bbb{H}^2$ target, Kyoto J. Math., 56 (2016), 283-323.
doi: 10.1215/21562261-3478889.![]() ![]() ![]() |
[8] |
I. Bejenaru and D. Tataru, Near soliton evolution for equivariant Schrödinger maps in two spatial dimensions, Mem. Amer. Math. Soc., 228 (2014), no. 1069.
![]() ![]() |
[9] |
D. Borthwick and J. L. Marzuola, Dispersive estimates for scalar and matrix Schrödinger operators on $\Bbb{H}^{n+1}$, Math. Phys. Anal. Geom., 18 (2015), 26 pp.
doi: 10.1007/s11040-015-9191-8.![]() ![]() ![]() |
[10] |
P. D'Ancona and Q. Zhang, Global existence of small equivariant wave maps on rotationally symmetric manifolds, Int. Math. Res. Not. IMRN, (2016), no. 4,978–1025.
doi: 10.1093/imrn/rnv152.![]() ![]() ![]() |
[11] |
W. Ding and Y. Wang, Schrödinger flow of maps into symplectic manifolds, Sci. China Ser. A, 41 (1998), 746-755.
doi: 10.1007/BF02901957.![]() ![]() ![]() |
[12] |
W. Ding and Y. Wang, Local Schrödinger flow into Kähler manifolds, Sci. China Ser. A, 44 (2001), 1446-1464.
doi: 10.1007/BF02877074.![]() ![]() ![]() |
[13] |
S. Gustafson, K. Kang and T.-P. Tsai, Schrödinger flow near harmonic maps, Comm. Pure Appl. Math., 60 (2007), 463-499.
doi: 10.1002/cpa.20143.![]() ![]() ![]() |
[14] |
S. Gustafson, K. Kang and T.-P. Tsai, Asymptotic stability of harmonic maps under the Schrödinger flow, Duke Math. J., 145 (2008), 537-583.
doi: 10.1215/00127094-2008-058.![]() ![]() ![]() |
[15] |
S. Gustafson, K. Nakanishi and T.-P. Tsai, Asymtotic stability, concentration, and oscillation in harmonic map heat-flow, Landau-Lifshitz, and Schrödinger maps on $\Bbb {R}^2$, Comm. Math. Phys., 300 (2010), 205-242.
doi: 10.1007/s00220-010-1116-6.![]() ![]() ![]() |
[16] |
A. D. Ionescu and C. E. Kenig, Low-regularity Schrödinger maps. Ⅱ. Global well-posedness in dimensions $d\geq 3$, Comm. Math. Phys., 271 (2007), 523-559.
doi: 10.1007/s00220-006-0180-4.![]() ![]() ![]() |
[17] |
A. D. Ionescu and G. Staffilani, Semilinear Schrödinger flows on hyperbolic spaces: Scattering $H^1$, Math. Ann., 345 (2009), 133-158.
doi: 10.1007/s00208-009-0344-6.![]() ![]() ![]() |
[18] |
H. Koch, D. Tataru and M. Visan, Dispersive Equations and Nonlinear Waves, Vol. 45, Oberwolfach Seminars, Birkhäuser/Springer, Basel, 2014.
![]() ![]() |
[19] |
A. Lawrie, J. Lührmann, S.-J. Oh and S. Shahshahani, Asymptotic stability of harmonic maps on the hyperbolic plane under the Schrödinger maps evolution, preprint, arXiv: 1909.06899.
![]() |
[20] |
A. Lawrie, S.-J. Oh and S. Shahshahani, Stability of stationary equivariant wave maps from the hyperbolic plane, Amer. J. Math., 139 (2017), 1085-1147.
doi: 10.1353/ajm.2017.0028.![]() ![]() ![]() |
[21] |
A. Lawrie, S.-J. Oh and S. Shahshahani, Gap eigenvalues and asymptotic dynamics of geometric wave equations on hyperbolic space, J. Funct. Anal., 271 (2016), 3111-3161.
doi: 10.1016/j.jfa.2016.08.019.![]() ![]() ![]() |
[22] |
A. Lawrie, S.-J. Oh and S. Shahshahani, Equivariant wave maps on the hyperbolic plane with large energy, Math. Res. Lett., 24 (2017), 449-479.
doi: 10.4310/MRL.2017.v24.n2.a10.![]() ![]() ![]() |
[23] |
A. Lawrie, S.-J. Oh and S. Shahshahani, The Cauchy problem for wave maps on hyperbolic space in dimensions $d\geq 4$, Int. Math. Res. Not. IMRN, (2018), no. 7, 1954–2051.
doi: 10.1093/imrn/rnw272.![]() ![]() ![]() |
[24] |
M. Lemm and V. Markovic, Heat flows on hyperbolic spaces, J. Differential Geom., 108, (2018), 495–529.
doi: 10.4310/jdg/1519959624.![]() ![]() ![]() |
[25] |
Z. Li, Asymptotic stability of large energy harmonic maps under the wave map from 2D hyperbolic spaces to 2D hyperbolic spaces, preprint, arXiv: 1707.01362.
![]() |
[26] |
Z. Li, Endpoint Strichartz estimates for magnetic wave equations on two dimensional hyperbolic spaces, emph{Differential Integral Equations}, 32, (2019), 369–408.
![]() ![]() |
[27] |
Z. Li, Global Schrödinger map flows to Kähler manifolds with small data in critical Sobolev spaces: Energy critical case, preprint, arXiv: 1811.10924.
![]() |
[28] |
Z. Li, Global Schrödinger map flows to Kähler manifolds with small data in critical Sobolev spaces: High dimensions, preprint, arXiv: 1903.05551.
![]() |
[29] |
Z. Li, X. Ma and L. Zhao, Asymptotic stability of harmonic maps between 2D hyperbolic spaces under the wave map equation. Ⅱ. Small energy case, Dyn. Partial Differ. Equ., 15 (2018), 283-336.
doi: 10.4310/DPDE.2018.v15.n4.a3.![]() ![]() ![]() |
[30] |
P. Li and L.-F. Tam, The heat equation and harmonic maps of complete manifolds, Invent. Math., 105 (1991), 1-46.
doi: 10.1007/BF01232256.![]() ![]() ![]() |
[31] |
Z. Li and L. Zhao, Convergence to harmonic maps for the Landau-Lifshitz flows between two dimensional hyperbolic spaces, Discrete Contin. Dyn. Syst., 39 (2019), 607-638.
doi: 10.3934/dcds.2019025.![]() ![]() ![]() |
[32] |
H. McGahagan, An approximation scheme for Schrödinger maps, Comm. Partial Differential Equations, 32 (2007), 375-400.
doi: 10.1080/03605300600856758.![]() ![]() ![]() |
[33] |
F. Merle, P. Raphaël and I. Rodnianski, Blowup dynamics for smooth data equivariant solutions to the critical Schrödinger map problem, Invent. Math., 193 (2013), 249-365.
doi: 10.1007/s00222-012-0427-y.![]() ![]() ![]() |
[34] |
G. Perelman, Blow up dynamics for equivariant critical Schrödinger maps, Comm. Math. Phys., 330 (2014), 69-105.
doi: 10.1007/s00220-014-1916-1.![]() ![]() ![]() |
[35] |
C. Song and Y. Wang, Uniqueness of Schrödinger flow on manifolds, Comm. Anal. Geom., 26 (2018), 217-235.
doi: 10.4310/CAG.2018.v26.n1.a5.![]() ![]() ![]() |
[36] |
P.-L. Sulem, C. Sulem and C. Bardos, On the continuous limit for a system of classical spins, Comm. Math. Phys., 107 (1986), 431-454.
doi: 10.1007/BF01220998.![]() ![]() ![]() |
[37] |
T. Tao, M. Visan and X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations, 32 (2007), 1281-1343.
doi: 10.1080/03605300701588805.![]() ![]() ![]() |