[1]
|
N. Aubrun and M.-P. Béal, Decidability of conjugacy of tree-shifts of finite type, in Automata, Languages and Programming Part 1, Springer, Berlin, Heidelberg, 2009,132–143.
doi: 10.1007/978-3-642-02927-1_13.
|
[2]
|
N. Aubrun and M.-P. Béal, Sofic and almost of finite type tree-shifts, in Computer Science – Theory and Applications, Springer, Berlin, 2010, 12–24.
doi: 10.1007/978-3-642-13182-0_2.
|
[3]
|
N. Aubrun and M.-P. Béal, Tree-shifts of finite type, Theoret. Comput. Sci., 459 (2012), 16-25.
doi: 10.1016/j.tcs.2012.07.020.
|
[4]
|
N. Aubrun and M.-P. Béal, Sofic tree-shifts, Theory Comput. Syst., 53 (2013), 621-644.
doi: 10.1007/s00224-013-9456-1.
|
[5]
|
N. Aubrun and M.-P. Béal, Tree algebra of sofic tree languages, RAIRO Theor. Inform. Appl., 48 (2014), 431-451.
doi: 10.1051/ita/2014018.
|
[6]
|
T. Berger and Z. X. Ye, Entropic aspects of random fields on trees, IEEE Trans. Inform. Theory, 36 (1990), 1006-1018.
doi: 10.1109/18.57200.
|
[7]
|
L. P. Bowen, A brief introduction to sofic entropy theory, in Proceedings of the International Congress of Mathematicians – Rio de Janeiro 2018, Vol. 3, World Sci. Publ., Hackensack, NJ, 2019, 1847–1866, arXiv: 1711.02062v1.
doi: 10.1142/9789813272880_0120.
|
[8]
|
M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Mathematics, Vol. 527, Springer-Verlag, Berlin-New York, 1976.
doi: 10.1007/BFb0082364.
|
[9]
|
D. Gamarnik and D. Katz, Sequential cavity method for computing free energy and surface pressure, J. Stat. Phys., 137 (2009), 205-232.
doi: 10.1007/s10955-009-9849-3.
|
[10]
|
M. Hochman and T. Meyerovitch, A characterization of the entropies of multidimensional shifts of finite type, Ann. of Math., 171 (2010), 2011-2038.
doi: 10.4007/annals.2010.171.2011.
|
[11]
|
D. Kerr and H. Li, Ergodic Theory. Independence and Dichotomies, Springer, Cham, 2016.
doi: 10.1007/978-3-319-49847-8.
|
[12]
|
E. Louidor, B. Marcus and R. Pavlov, Independence entropy of $\mathbb {Z}^d$-shift spaces, Acta Appl. Math., 126 (2013), 297-317.
doi: 10.1007/s10440-013-9819-2.
|
[13]
|
J. Mairesse and I. Marcovici, Uniform sampling of subshifts of finite type on grids and trees, Internat. J. Found. Comput. Sci., 28 (2017), 263-287.
doi: 10.1142/S0129054117500174.
|
[14]
|
B. Marcus and R. Pavlov, Approximating entropy for a class of $\mathbb {Z}^2$ Markov random fields and pressure for a class of functions on $\mathbb {Z}^2$ shifts of finite type, Ergodic Theory Dynam. Systems, 33 (2013), 186-220.
doi: 10.1017/S0143385711000824.
|
[15]
|
T. Meyerovitch and R. Pavlov, On independence and entropy for high-dimensional isotropic subshifts, Proc. Lond. Math. Soc., 109 (2014), 921-945.
doi: 10.1112/plms/pdu029.
|
[16]
|
R. Pavlov, Approximating the hard square entropy constant with probabilistic methods, Ann. Probab., 40 (2012), 2362-2399.
doi: 10.1214/11-AOP681.
|
[17]
|
K. Petersen and I. Salama, Entropy on regular trees, preprint, arXiv: 1909.05153v1, 2019.
|
[18]
|
K. Petersen and I. Salama, Tree shift topological entropy, Theoret. Comput. Sci., 743 (2018), 64-71.
doi: 10.1016/j.tcs.2018.05.034.
|
[19]
|
S. T. Piantadosi, Symbolic dynamics on free groups, Discrete Contin. Dyn. Syst., 20 (2008), 725-738.
doi: 10.3934/dcds.2008.20.725.
|
[20]
|
Z. Ye and T. Berger, Information Measures for Discrete Random Fields, Science Press Beijing, Beijing, 1998.
|