In this paper we study the incompressible non-inertial Qian-Sheng model, which describes the hydrodynamics of nematic liquid crystals without inertial effect in the $ Q $-tensor framework. Under some proper assumptions on the viscous coefficients, we prove the local well-posedness with large initial data and the global existence with small size of the initial data in the classical solutions regime.
Citation: |
[1] |
F. De Anna and A. Zarnescu, Global well-posedness and twist-wave solutions for the inertial Qian-Sheng model of liquid crystals, J. Differential Equations, 264 (2018), 1080-1118.
doi: 10.1016/j.jde.2017.09.031.![]() ![]() ![]() |
[2] |
E. Feireisl, E. Rocca, G. Schimperna and A. Zarnescu, On a hyperbolic system arising in liquid crystals modeling, J. Hyperbolic Differ. Equ., 15 (2018), 15-35.
doi: 10.1142/S0219891618500029.![]() ![]() ![]() |
[3] |
S. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland Publishing Co., Amsterdam, 1962.
![]() ![]() |
[4] |
N. Jiang and Y.-L. Luo, On well-posedness of Ericksen-Leslie's hyperbolic incompressible liquid crystal model, SIAM J. Math. Anal., 51 (2019), 403-434.
doi: 10.1137/18M1167310.![]() ![]() ![]() |
[5] |
E. Kirr, M. Wilkinson and A. Zarnescu, Dynamic statistical scaling in the Landau-de Gennes theory of nematic liquid crystals, J. Stat. Phys., 155 (2014), 625-657.
doi: 10.1007/s10955-014-0970-6.![]() ![]() ![]() |
[6] |
F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration Mech. Anal., 28 (1968), 265-283.
doi: 10.1007/BF00251810.![]() ![]() ![]() |
[7] |
F.-H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system, Arch. Ration. Mech. Anal., 154 (2000), 135-156.
doi: 10.1007/s002050000102.![]() ![]() ![]() |
[8] |
P.-L. Lions, Mathematical Topics in Fluid Mechanics, Oxford Lecture Series in Mathematics and its Applications, Vol. 3, The Clarendon Press, Oxford University Press, New York, 1996.
![]() ![]() |
[9] |
N. J. Mottram and C. J. Newton, Introduction to Q-tensor theory, preprint, arXiv: 1409.3542, 2014.
![]() |
[10] |
M. Paicu and A. Zarnescu, Global existence and regularity for the full coupled Navier-Stokes and Q-tensor system, SIAM J. Math. Anal., 43 (2011), 2009-2049.
doi: 10.1137/10079224X.![]() ![]() ![]() |
[11] |
M. Paicu and A. Zarnescu, Energy dissipation and regularity for a coupled Navier-Stokes and Q-tensor system, Arch. Ration. Mech. Anal., 203 (2012), 45-67.
doi: 10.1007/s00205-011-0443-x.![]() ![]() ![]() |
[12] |
V. Popa-Nita and P. Oswald, Waves at the nematic-isotropic interface: The role of surface tension anisotropy, curvature elasticity, and backflow effects, Phys. Rev. E., 68 (2003), 061707.
doi: 10.1103/PhysRevE.68.061707.![]() ![]() |
[13] |
V. Popa-Nita, T. J. Sluckin and S. Kralj, Waves at the nematic-isotropic interface: Thermotropic nematogen-non-nematogen mixtures, Phys. Rev. E., 71 (2005), 061706.
doi: 10.1103/PhysRevE.71.061706.![]() ![]() |
[14] |
T. Qian and P. Sheng, Generalized hydrodynamic equations for nematic liquid crystals, Phys. Rev. E., 58 (1998), 7475-7485.
doi: 10.1103/PhysRevE.58.7475.![]() ![]() |
[15] |
Y. Xiao, Global strong solution to the three-dimensional liquid crystal flows of Q-tensor model, J. Differential Equations, 262 (2017), 1291-1316.
doi: 10.1016/j.jde.2016.10.011.![]() ![]() ![]() |
[16] |
A. Zarnescu, Topics in the Q-tensor theory of liquid crystals, Topics Mathematical Modeling and Analysis, 7 (2012), 187-252.
![]() ![]() |