\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic behavior for a Schrödinger equation with nonlinear subcritical dissipation

  • * Corresponding author

    * Corresponding author

ZH thanks NSFC 11671353, 11401153, Zhejiang Provincial Natural Science Foundation of China under Grant No. LY18A010025, and CSC for their financial support; and the Laboratoire JacquesLouis Lions for its kind hospitality

Abstract Full Text(HTML) Related Papers Cited by
  • We study the time-asymptotic behavior of solutions of the Schrödinger equation with nonlinear dissipation

    $ \begin{equation*} \partial _t u = i \Delta u + \lambda |u|^\alpha u \end{equation*} $

    in $ {\mathbb R}^N $, $ N\geq1 $, where $ \lambda\in {\mathbb C} $, $ \Re \lambda <0 $ and $ 0<\alpha<\frac2N $. We give a precise description of the behavior of the solutions (including decay rates in $ L^2 $ and $ L^\infty $, and asymptotic profile), for a class of arbitrarily large initial data, under the additional assumption that $ \alpha $ is sufficiently close to $ \frac2N $.

    Mathematics Subject Classification: Primary: 35Q55; Secondary: 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] T. CazenaveS. CorreiaF. Dickstein and F. B. Weissler, A Fujita-type blowup result and low energy scattering for a nonlinear Schrödinger equation, São Paulo J. Math. Sci., 9 (2015), 146-161.  doi: 10.1007/s40863-015-0020-6.
    [2] T. Cazenave, Z. Han and Y. Martel, Blowup on an arbitrary compact set for a Schrödinger equation with nonlinear source term, J. Dynam. Differential Equations (2020). doi: 10.1007/s10884-020-09841-8.
    [3] T. CazenaveY. Martel and L. F. Zhao, Finite-time blowup for a Schrödinger equation with nonlinear source term, Discrete Contin. Dynam. Systems, 39 (2019), 1171-1183.  doi: 10.3934/dcds.2019050.
    [4] T. Cazenave and I. Naumkin, Local existence, global existence, and scattering for the nonlinear Schrödinger equation, Commun. Contemp. Math., 19 (2017), 1650038, 20 pp. doi: 10.1142/S0219199716500383.
    [5] T. Cazenave and I. Naumkin, Modified scattering for the critical nonlinear Schrödinger equation, J. Funct. Anal., 274 (2018), 402-432.  doi: 10.1016/j.jfa.2017.10.022.
    [6] T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147 (1992), 75-100.  doi: 10.1007/BF02099529.
    [7] M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys., 65 (1993), 851-1112.  doi: 10.1103/RevModPhys.65.851.
    [8] J. GinibreT. Ozawa and G. Velo, On the existence of the wave operators for a class of nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 60 (1994), 211-239. 
    [9] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. Ⅱ. Scattering theory, general case, J. Funct. Anal., 32 (1979), 33-71.  doi: 10.1016/0022-1236(79)90077-6.
    [10] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. Ⅲ. Special theories in dimensions 1, 2 and 3, Ann. Inst. Henri Poincaré Sect. A (N.S.), 28 (1978), 287-316. 
    [11] N. Hayashi, C. H. Li and P. I. Naumkin, Time decay for nonlinear dissipative Schrödinger equations in optical fields, Adv. Math. Phys., (2016), Art. ID 3702738, 7 pp. doi: 10.1155/2016/3702738.
    [12] N. HayashiC. H. Li and P. I. Naumkin, Upper and lower time decay bounds for solutions of dissipative nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 16 (2017), 2089-2104.  doi: 10.3934/cpaa.2017103.
    [13] T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 46 (1987), 113-129. 
    [14] T. Kato, Nonlinear Schrödinger equations, Schrödinger Operators (Sønderborg, 1988), Lecture Notes in Phys., Springer, Berlin, 345 (1989), 218-263.  doi: 10.1007/3-540-51783-9_22.
    [15] N. Kita and A. Shimomura, Large time behavior of solutions to Schrödinger equations with a dissipative nonlinearity for arbitrarily large initial data, J. Math. Soc. Japan, 61 (2009), 39-64.  doi: 10.2969/jmsj/06110039.
    [16] A. Mielke, The Ginzburg-Landau equation in its role as a modulation equation, Handbook of Dynamical Systems, North-Holland, Amsterdam, 2 (2002), 759-834.  doi: 10.1016/S1874-575X(02)80036-4.
    [17] K. Nakanishi and T. Ozawa, Remarks on scattering for nonlinear Schrödinger equations, NoDEA Nonlinear Differential Equations Appl., 9 (2002), 45-68.  doi: 10.1007/s00030-002-8118-9.
    [18] T. Ozawa, Remarks on proofs of conservation laws for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 25 (2006), 403-408.  doi: 10.1007/s00526-005-0349-2.
    [19] A. Shimomura, Asymptotic behavior of solutions for Schrödinger equations with dissipative nonlinearities, Comm. Partial Differential Equations, 31 (2006), 1407-1423.  doi: 10.1080/03605300600910316.
    [20] K. Stewartson and J. T. Stuart, A non-linear instability theory for a wave system in plane Poiseuille flow, J. Fluid Mech., 48 (1971), 529-545.  doi: 10.1017/S0022112071001733.
    [21] W. A. Strauss, Nonlinear scattering theory at low energy: Sequel, J. Funct. Anal., 43 (1981), 281-293.  doi: 10.1016/0022-1236(81)90019-7.
  • 加载中
SHARE

Article Metrics

HTML views(307) PDF downloads(281) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return