August  2020, 40(8): 4961-4983. doi: 10.3934/dcds.2020207

Positivity, monotonicity, and convexity for convolution operators

1. 

School of Mathematics and Statistics, UNSW Australia, Sydney, NSW 2052, Australia

2. 

Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile, Las Sophoras 173, Santiago, Chile

* Corresponding author: Carlos Lizama

Received  October 2019 Revised  December 2019 Published  May 2020

Fund Project: The second author is supported by CONICYT under Fondecyt Grant number 1180041

We consider the convolution inequality
$ \begin{equation} a*u {\ge} v\notag \end{equation} $
for given functions
$ a $
and
$ v $
, and we then investigate conditions on
$ a $
and
$ v $
that force the unknown function
$ u $
to be positive or monotone or convex. We demonstrate that these results for abstract convolution equations can be specialized to yield new insights into the qualitative properties of fractional difference and differential operators. Finally, we apply our results to finite difference methods for fractional differential equations, and we show that our results yield insights into the qualitative behavior of these types of numerical approximations.
Citation: Christopher Goodrich, Carlos Lizama. Positivity, monotonicity, and convexity for convolution operators. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4961-4983. doi: 10.3934/dcds.2020207
References:
[1]

L. AbadiasC. LizamaP. J. Miana and M. P. Velasco, Cesàro sums and algebra homomorphisms of bounded operators, Israel J. Math., 216 (2016), 471-505.  doi: 10.1007/s11856-016-1417-3.

[2]

L. AbadiasC. LizamaP. J. Miana and M. P. Velasco, On well-posedness of vector-valued fractional differential-difference equations, Discr. Cont. Dyn. Systems, Series A, 39 (2019), 2679-2708.  doi: 10.3934/dcds.2019112.

[3]

L. Abadias and P. J. Miana, Generalized Cesàro operators, fractional finite differences and Gamma functions, J. Funct. Anal., 274 (2018), 1424-1465.  doi: 10.1016/j.jfa.2017.10.010.

[4]

L. ErbeC. S. GoodrichJ. Baoguo and A. Peterson, Monotonicity results for delta fractional difference revisited, Math. Slovaca, 67 (2017), 895-906.  doi: 10.1515/ms-2017-0018.

[5]

J. BonetC. Fernández and R. Meise, Characterization of the $\omega$-hypoelliptic convolution operators on ultradistributions, Ann. Acad. Sci. Fenn. Math., 25 (2000), 261-284. 

[6]

I. Bright, Moving averages of ordinary differential equations via convolution, J. Differential Equations, 250 (2011), 1267-1284.  doi: 10.1016/j.jde.2010.10.011.

[7]

Y. Choi, Injective convolution operators on $\ell^{\infty}(\Gamma)$ are surjective, Canad. Math. Bull., 53 (2010), 447-452.  doi: 10.4153/CMB-2010-053-5.

[8]

O. Constatin and J. Hargraves, Monotone solutions to a nonlinear integral equation of convolution type, Nonlinear Anal. Real World Appl., 15 (2014), 38-41.  doi: 10.1016/j.nonrwa.2013.05.003.

[9]

R. Dahal and C. S. Goodrich, A monotonicity result for discrete fractional difference operators, Arch. Math. (Basel), 102 (2014), 293-299.  doi: 10.1007/s00013-014-0620-x.

[10]

M. Darwish, Monotonic solutions of a convolution functional-integral equation, Appl. Math. Comput., 219 (2013), 10777-10782.  doi: 10.1016/j.amc.2013.05.001.

[11]

O. Diekmann and H. Kaper, On the bounded solutions of a nonlinear convolution equation, Nonlinear Anal., 2 (1978), 721-737.  doi: 10.1016/0362-546X(78)90015-9.

[12]

K. Diethelm, Monotonicity of functions and sign changes of their Caputo derivatives, Fract. Calc. Appl. Anal., 19 (2016), 561-566.  doi: 10.1515/fca-2016-0029.

[13]

J. Dieudonné, Sur le produit de composition. Ⅱ, J. Math. Pures Appl. (9), 39 (1960), 275-292. 

[14]

L. Ehrenpreis, Solution of some problems of division. Ⅳ. Invertible and elliptic operators, Amer. J. Math., 82 (1960), 522-588.  doi: 10.2307/2372971.

[15]

C. FernándezA. Galbis and D. Jornet, Perturbations of surjective convolution operators, Proc. Amer. Math. Soc., 130 (2002), 2377-2381.  doi: 10.1090/S0002-9939-02-06359-1.

[16]

M. Gómez-Callado and E. Jordá, Regularity of solutions of convolution equations, J. Math. Anal. Appl., 338 (2008), 873-884.  doi: 10.1016/j.jmaa.2007.05.053.

[17]

C. S. Goodrich, A convexity result for fractional differences, Appl. Math. Lett., 35 (2014), 58-62.  doi: 10.1016/j.aml.2014.04.013.

[18]

C. S. Goodrich, A note on convexity, concavity, and growth conditions in discrete fractional calculus with delta difference, Math. Inequal. Appl., 19 (2016), 769-779.  doi: 10.7153/mia-19-57.

[19]

C. S. Goodrich and C. Lizama, A transference principle for nonlocal operators using a convolutional approach: Fractional monotonicity and convexity, Israel J. Math., 236 (2020), 533-589. doi: 10.1007/s11856-020-1991-2.

[20]

C. S. Goodrich and A. C. Peterson, Discrete Fractional Calculus, Springer International Publishing, 2015. doi: 10.1007/978-3-319-25562-0.

[21]

A. Hanyga, On solutions of matrix-valued convolution equations, CM-derivatives and their applications in linear and nonlinar anisotropic viscoelasticity, Z. Angew. Math. Phys., 70 (2019), art. 103, 13 pp.

[22]

B. JiaL. Erbe and A. Peterson, Two monotonicity results for nabla and delta fractional differences, Arch. Math. (Basel), 104 (2015), 589-597.  doi: 10.1007/s00013-015-0765-2.

[23]

B. JinB. Li and Z. Zhou, Discrete maximal regularity of time-stepping schemes for fractional evolution equations, Numer. Math., 138 (2018), 101-131.  doi: 10.1007/s00211-017-0904-8.

[24]

R. Kamocki, A new representation formula for the Hilfer fractional derivative and its application, J. Comp. Appl. Math., 308 (2016), 39-45.  doi: 10.1016/j.cam.2016.05.014.

[25]

J. KemppainenJ. SiljanderV. Vergara and R. Zacher, Decay estimates for time-fractional and other non-local in time subdiffusion equations in $\Bbb{R}^d$, Math. Ann., 366 (2016), 941-979.  doi: 10.1007/s00208-015-1356-z.

[26]

A. N. Kochubei, Distributed order calculus and equations of ultraslow diffusion, J. Math. Anal. Appl., 340 (2008), 252-281.  doi: 10.1016/j.jmaa.2007.08.024.

[27]

A. N. Kochubei, General fractional calculus, evolution equations, and renewal processes, Integral Equations Oper. Theory, 71 (2011), 583-600. 

[28]

O. Lipovan, Asymptotic properties of solutions to some nonlinear integral equations of convolution type, Nonlinear Anal., 69 (2008), 2179-2183.  doi: 10.1016/j.na.2007.07.056.

[29]

C. Lizama, The Poisson distribution, abstract fractional difference equations, and stability, Proc. Amer. Math. Soc., 145 (2017), 3809-3827.  doi: 10.1090/proc/12895.

[30]

C. Lizama, $\ell_p$-maximal regularity for fractional difference equations on UMD spaces, Math. Nachr., 288 (2015), 2079-2092.  doi: 10.1002/mana.201400326.

[31]

C. Lizama and M. Murillo-Arcila, Maximal regularity in $\ell_p$ spaces for discrete time fractional shifted equations, J. Differential Equations., 263 (2017), 3175-3196.  doi: 10.1016/j.jde.2017.04.035.

[32]

G. LvH. GaoJ. Wei and J.-L. Wu, BMO and Morrey-Campanato estimates for stochastic convolutions and Schauder estimates for stochastic parabolic equations, J. Differential Equations, 266 (2019), 2666-2717.  doi: 10.1016/j.jde.2018.08.042.

[33]

S. G. Samko and R. P. Cardoso, Integral equations of the first kind of Sonine type, Int. J. Math. and Math. Sci., 57 (2003), 3609-3632. 

[34]

K. Schumacher, Traveling-front solutions for integro-differential equations. Ⅰ., J. Reine Angew. Math., 316 (1980), 54-70.  doi: 10.1515/crll.1980.316.54.

[35]

K. Strom, On convolutions of B-splines, J. Comp. Appl. Math., 55 (1994), 1-29.  doi: 10.1016/0377-0427(94)90182-1.

[36]

V. Vergara and R. Zacher, Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods, SIAM J. Math. Anal., 47 (2015), 210-239.  doi: 10.1137/130941900.

[37]

Y. WangL. Liu and Y. Wu, Positive solutions for a class of fractional boundary value problem with changing sign nonlinearity, Nonlinear Analysis, 74 (2011), 6434-6441.  doi: 10.1016/j.na.2011.06.026.

[38]

Z. Xu and C. Wu, Monostable waves in a class of non-local convolution differential equation, J. Math. Anal. Appl., 462 (2018), 1205-1224.  doi: 10.1016/j.jmaa.2018.02.036.

show all references

References:
[1]

L. AbadiasC. LizamaP. J. Miana and M. P. Velasco, Cesàro sums and algebra homomorphisms of bounded operators, Israel J. Math., 216 (2016), 471-505.  doi: 10.1007/s11856-016-1417-3.

[2]

L. AbadiasC. LizamaP. J. Miana and M. P. Velasco, On well-posedness of vector-valued fractional differential-difference equations, Discr. Cont. Dyn. Systems, Series A, 39 (2019), 2679-2708.  doi: 10.3934/dcds.2019112.

[3]

L. Abadias and P. J. Miana, Generalized Cesàro operators, fractional finite differences and Gamma functions, J. Funct. Anal., 274 (2018), 1424-1465.  doi: 10.1016/j.jfa.2017.10.010.

[4]

L. ErbeC. S. GoodrichJ. Baoguo and A. Peterson, Monotonicity results for delta fractional difference revisited, Math. Slovaca, 67 (2017), 895-906.  doi: 10.1515/ms-2017-0018.

[5]

J. BonetC. Fernández and R. Meise, Characterization of the $\omega$-hypoelliptic convolution operators on ultradistributions, Ann. Acad. Sci. Fenn. Math., 25 (2000), 261-284. 

[6]

I. Bright, Moving averages of ordinary differential equations via convolution, J. Differential Equations, 250 (2011), 1267-1284.  doi: 10.1016/j.jde.2010.10.011.

[7]

Y. Choi, Injective convolution operators on $\ell^{\infty}(\Gamma)$ are surjective, Canad. Math. Bull., 53 (2010), 447-452.  doi: 10.4153/CMB-2010-053-5.

[8]

O. Constatin and J. Hargraves, Monotone solutions to a nonlinear integral equation of convolution type, Nonlinear Anal. Real World Appl., 15 (2014), 38-41.  doi: 10.1016/j.nonrwa.2013.05.003.

[9]

R. Dahal and C. S. Goodrich, A monotonicity result for discrete fractional difference operators, Arch. Math. (Basel), 102 (2014), 293-299.  doi: 10.1007/s00013-014-0620-x.

[10]

M. Darwish, Monotonic solutions of a convolution functional-integral equation, Appl. Math. Comput., 219 (2013), 10777-10782.  doi: 10.1016/j.amc.2013.05.001.

[11]

O. Diekmann and H. Kaper, On the bounded solutions of a nonlinear convolution equation, Nonlinear Anal., 2 (1978), 721-737.  doi: 10.1016/0362-546X(78)90015-9.

[12]

K. Diethelm, Monotonicity of functions and sign changes of their Caputo derivatives, Fract. Calc. Appl. Anal., 19 (2016), 561-566.  doi: 10.1515/fca-2016-0029.

[13]

J. Dieudonné, Sur le produit de composition. Ⅱ, J. Math. Pures Appl. (9), 39 (1960), 275-292. 

[14]

L. Ehrenpreis, Solution of some problems of division. Ⅳ. Invertible and elliptic operators, Amer. J. Math., 82 (1960), 522-588.  doi: 10.2307/2372971.

[15]

C. FernándezA. Galbis and D. Jornet, Perturbations of surjective convolution operators, Proc. Amer. Math. Soc., 130 (2002), 2377-2381.  doi: 10.1090/S0002-9939-02-06359-1.

[16]

M. Gómez-Callado and E. Jordá, Regularity of solutions of convolution equations, J. Math. Anal. Appl., 338 (2008), 873-884.  doi: 10.1016/j.jmaa.2007.05.053.

[17]

C. S. Goodrich, A convexity result for fractional differences, Appl. Math. Lett., 35 (2014), 58-62.  doi: 10.1016/j.aml.2014.04.013.

[18]

C. S. Goodrich, A note on convexity, concavity, and growth conditions in discrete fractional calculus with delta difference, Math. Inequal. Appl., 19 (2016), 769-779.  doi: 10.7153/mia-19-57.

[19]

C. S. Goodrich and C. Lizama, A transference principle for nonlocal operators using a convolutional approach: Fractional monotonicity and convexity, Israel J. Math., 236 (2020), 533-589. doi: 10.1007/s11856-020-1991-2.

[20]

C. S. Goodrich and A. C. Peterson, Discrete Fractional Calculus, Springer International Publishing, 2015. doi: 10.1007/978-3-319-25562-0.

[21]

A. Hanyga, On solutions of matrix-valued convolution equations, CM-derivatives and their applications in linear and nonlinar anisotropic viscoelasticity, Z. Angew. Math. Phys., 70 (2019), art. 103, 13 pp.

[22]

B. JiaL. Erbe and A. Peterson, Two monotonicity results for nabla and delta fractional differences, Arch. Math. (Basel), 104 (2015), 589-597.  doi: 10.1007/s00013-015-0765-2.

[23]

B. JinB. Li and Z. Zhou, Discrete maximal regularity of time-stepping schemes for fractional evolution equations, Numer. Math., 138 (2018), 101-131.  doi: 10.1007/s00211-017-0904-8.

[24]

R. Kamocki, A new representation formula for the Hilfer fractional derivative and its application, J. Comp. Appl. Math., 308 (2016), 39-45.  doi: 10.1016/j.cam.2016.05.014.

[25]

J. KemppainenJ. SiljanderV. Vergara and R. Zacher, Decay estimates for time-fractional and other non-local in time subdiffusion equations in $\Bbb{R}^d$, Math. Ann., 366 (2016), 941-979.  doi: 10.1007/s00208-015-1356-z.

[26]

A. N. Kochubei, Distributed order calculus and equations of ultraslow diffusion, J. Math. Anal. Appl., 340 (2008), 252-281.  doi: 10.1016/j.jmaa.2007.08.024.

[27]

A. N. Kochubei, General fractional calculus, evolution equations, and renewal processes, Integral Equations Oper. Theory, 71 (2011), 583-600. 

[28]

O. Lipovan, Asymptotic properties of solutions to some nonlinear integral equations of convolution type, Nonlinear Anal., 69 (2008), 2179-2183.  doi: 10.1016/j.na.2007.07.056.

[29]

C. Lizama, The Poisson distribution, abstract fractional difference equations, and stability, Proc. Amer. Math. Soc., 145 (2017), 3809-3827.  doi: 10.1090/proc/12895.

[30]

C. Lizama, $\ell_p$-maximal regularity for fractional difference equations on UMD spaces, Math. Nachr., 288 (2015), 2079-2092.  doi: 10.1002/mana.201400326.

[31]

C. Lizama and M. Murillo-Arcila, Maximal regularity in $\ell_p$ spaces for discrete time fractional shifted equations, J. Differential Equations., 263 (2017), 3175-3196.  doi: 10.1016/j.jde.2017.04.035.

[32]

G. LvH. GaoJ. Wei and J.-L. Wu, BMO and Morrey-Campanato estimates for stochastic convolutions and Schauder estimates for stochastic parabolic equations, J. Differential Equations, 266 (2019), 2666-2717.  doi: 10.1016/j.jde.2018.08.042.

[33]

S. G. Samko and R. P. Cardoso, Integral equations of the first kind of Sonine type, Int. J. Math. and Math. Sci., 57 (2003), 3609-3632. 

[34]

K. Schumacher, Traveling-front solutions for integro-differential equations. Ⅰ., J. Reine Angew. Math., 316 (1980), 54-70.  doi: 10.1515/crll.1980.316.54.

[35]

K. Strom, On convolutions of B-splines, J. Comp. Appl. Math., 55 (1994), 1-29.  doi: 10.1016/0377-0427(94)90182-1.

[36]

V. Vergara and R. Zacher, Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods, SIAM J. Math. Anal., 47 (2015), 210-239.  doi: 10.1137/130941900.

[37]

Y. WangL. Liu and Y. Wu, Positive solutions for a class of fractional boundary value problem with changing sign nonlinearity, Nonlinear Analysis, 74 (2011), 6434-6441.  doi: 10.1016/j.na.2011.06.026.

[38]

Z. Xu and C. Wu, Monostable waves in a class of non-local convolution differential equation, J. Math. Anal. Appl., 462 (2018), 1205-1224.  doi: 10.1016/j.jmaa.2018.02.036.

[1]

Alexandra Rodkina, Henri Schurz. On positivity and boundedness of solutions of nonlinear stochastic difference equations. Conference Publications, 2009, 2009 (Special) : 640-649. doi: 10.3934/proc.2009.2009.640

[2]

Claire david@lmm.jussieu.fr David, Pierre Sagaut. Theoretical optimization of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 286-293. doi: 10.3934/proc.2007.2007.286

[3]

Emma Hoarau, Claire david@lmm.jussieu.fr David, Pierre Sagaut, Thiên-Hiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495-505. doi: 10.3934/proc.2007.2007.495

[4]

Mou-Hsiung Chang, Tao Pang, Moustapha Pemy. Finite difference approximation for stochastic optimal stopping problems with delays. Journal of Industrial and Management Optimization, 2008, 4 (2) : 227-246. doi: 10.3934/jimo.2008.4.227

[5]

Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure and Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[6]

Houda Hani, Moez Khenissi. Asymptotic behaviors of solutions for finite difference analogue of the Chipot-Weissler equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1421-1445. doi: 10.3934/dcdss.2016057

[7]

Giovanna Citti, Maria Manfredini, Alessandro Sarti. Finite difference approximation of the Mumford and Shah functional in a contact manifold of the Heisenberg space. Communications on Pure and Applied Analysis, 2010, 9 (4) : 905-927. doi: 10.3934/cpaa.2010.9.905

[8]

Xiaohai Wan, Zhilin Li. Some new finite difference methods for Helmholtz equations on irregular domains or with interfaces. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1155-1174. doi: 10.3934/dcdsb.2012.17.1155

[9]

Jonathan Touboul. Erratum on: Controllability of the heat and wave equations and their finite difference approximations by the shape of the domain. Mathematical Control and Related Fields, 2019, 9 (1) : 221-222. doi: 10.3934/mcrf.2019006

[10]

Ronald E. Mickens. A nonstandard finite difference scheme for the drift-diffusion system. Conference Publications, 2009, 2009 (Special) : 558-563. doi: 10.3934/proc.2009.2009.558

[11]

Jonathan Touboul. Controllability of the heat and wave equations and their finite difference approximations by the shape of the domain. Mathematical Control and Related Fields, 2012, 2 (4) : 429-455. doi: 10.3934/mcrf.2012.2.429

[12]

Gianluca Frasca-Caccia, Peter E. Hydon. Locally conservative finite difference schemes for the modified KdV equation. Journal of Computational Dynamics, 2019, 6 (2) : 307-323. doi: 10.3934/jcd.2019015

[13]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[14]

Junxiang Li, Yan Gao, Tao Dai, Chunming Ye, Qiang Su, Jiazhen Huo. Substitution secant/finite difference method to large sparse minimax problems. Journal of Industrial and Management Optimization, 2014, 10 (2) : 637-663. doi: 10.3934/jimo.2014.10.637

[15]

Roumen Anguelov, Jean M.-S. Lubuma, Meir Shillor. Dynamically consistent nonstandard finite difference schemes for continuous dynamical systems. Conference Publications, 2009, 2009 (Special) : 34-43. doi: 10.3934/proc.2009.2009.34

[16]

Hongsong Feng, Shan Zhao. A multigrid based finite difference method for solving parabolic interface problem. Electronic Research Archive, 2021, 29 (5) : 3141-3170. doi: 10.3934/era.2021031

[17]

Brittany Froese Hamfeldt, Jacob Lesniewski. A convergent finite difference method for computing minimal Lagrangian graphs. Communications on Pure and Applied Analysis, 2022, 21 (2) : 393-418. doi: 10.3934/cpaa.2021182

[18]

Xingwang Xu, Paul C. Yang. Positivity of Paneitz operators. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 329-342. doi: 10.3934/dcds.2001.7.329

[19]

Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007

[20]

Wei Qu, Siu-Long Lei, Seak-Weng Vong. A note on the stability of a second order finite difference scheme for space fractional diffusion equations. Numerical Algebra, Control and Optimization, 2014, 4 (4) : 317-325. doi: 10.3934/naco.2014.4.317

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (709)
  • HTML views (119)
  • Cited by (6)

Other articles
by authors

[Back to Top]