- Previous Article
- DCDS Home
- This Issue
-
Next Article
Asymptotic behavior of sign-changing radial solutions of a semilinear elliptic equation in $ \mathbb{R}^2 $ when exponent approaches $ +\infty $
On a discrete self-organized-criticality finite time result
1. | Worcester Polytechnic Institute, MA, USA |
2. | Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Italy |
In this paper we deal with theoretical and numerical aspects of some nonlinear problems related to sandpile models. We introduce a purely discrete model for infinitely many particles interacting according to a toppling process on a uniform two-dimensional grid and prove the convergence of the solutions to a differential initial value problem.
References:
[1] |
G. Aronsson, L. C. Evans and Y. Wu,
Fast/slow diffusion and growing sandpiles, J. Differential Equations, 131 (1996), 304-335.
doi: 10.1006/jdeq.1996.0166. |
[2] |
P. Bak, C. Tang and K. Wiesenfeld,
Self-organized criticality, Phys. Rev. A (3), 38 (1988), 364-374.
doi: 10.1103/PhysRevA.38.364. |
[3] |
P. Bántay and I. M. Jánosi,
Avalanche dynamics from anomalous diffusion, Phys. Rev. Lett., 68 (1992), 2058-2061.
|
[4] |
V. Barbu, Nonlinear Semi-Groups and Differential Equations in Banach Spaces, Noordhoff: Leyden, 1976. |
[5] |
V. Barbu, Nonlinear Differential Equations of Monotone Type in Banach Spaces, Springer: NewYork, 2010.
doi: 10.1007/978-1-4419-5542-5. |
[6] |
V. Barbu,
Self-organized criticality and convergence to equilibrium of solutions to nonlinear diffusion problems, Annual Reviews in Control, JARAP, 340 (2010), 52-61.
|
[7] |
V. Barbu,
Self-organized criticality of cellular automata model; absorbtion in finite-time of supercritical region into the critical one, Mathematical Methods in the Applied Sciences, 36 (2013), 1726-1733.
doi: 10.1002/mma.2718. |
[8] |
V. Barbu, G. Da Prato and M. Röckner,
Stochastic porous media equations and self- organized criticality, Comm. Math. Phys., 285 (2009), 901-923.
doi: 10.1007/s00220-008-0651-x. |
[9] |
J. W. Barrett and L. Prigozhin,
Sandpiles and superconductors: Nonconforming linear finite element approximations for mixed formulations of quasi-variational, IMA J. Numer. Anal., 35 (2015), 1-38.
doi: 10.1093/imanum/drt062. |
[10] |
H. Brézis, Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, Ed. L.Nachbin North-Hollands/ Americal Elsevier, 1973. |
[11] | |
[12] |
H. Brézis and A. Pazy,
Accretive sets and differential equations in Banach spaces, Israel J. Math., 8 (1970), 367-383.
doi: 10.1007/BF02798683. |
[13] |
J. M. Carlson, J. T. Chayes, E. R. Grannan and G. H. Swindle,
Self-organized criticality in sandpiles: Nature of the critical phenomenon, Phys. Rev. A (3), 42 (1990), 2467-2470.
doi: 10.1103/PhysRevA.42.2467. |
[14] |
J. M. Carlson and G. H. Swindle,
Self-organized criticality: Sandpiles, singularities, and scaling, Proc. Nat. Acad. Sci. USA, 92 (1995), 6712-6719.
doi: 10.1073/pnas.92.15.6712. |
[15] |
M. G. Crandall and T. M. Liggett,
Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93 (1971), 265-298.
doi: 10.2307/2373376. |
[16] |
M. Creutz,
Abelian sandpiles, Nucl. Phys. B (Proc. Suppl.), 20 (1991), 758-761.
|
[17] |
D. Dahr,
Self-organized critical state of sandpile automaton models, Phys. Rev. Lett., 64 (1990), 1613-1616.
doi: 10.1103/PhysRevLett.64.1613. |
[18] |
L. C. Evans, M. Feldman and R. F. Gariepy,
Fast/slow diffusion and collapsing sandpiles, J. Differential Equations, 137 (1997), 166-209.
doi: 10.1006/jdeq.1997.3243. |
[19] |
B. Gess,
Finite time extinction for stochastic sign fast diffusion and self-organized criticality, Comm. Math. Phys., 335 (2015), 309-344.
doi: 10.1007/s00220-014-2225-4. |
[20] |
U. Mosco,
Convergence of convex sets and of solutions of variational inequalities, Adv. in Math., 3 (1969), 510-585.
doi: 10.1016/0001-8708(69)90009-7. |
[21] |
U. Mosco, An Introduction to the approximate solution of variational inequalities, In: Constructive Aspects of Functional Analysis. Cime Summer Schools Erice, (ed. G. Geymonat), Springer, 57 (1971), 497–685. |
[22] |
U. Mosco,
Finite -time self - organized - criticality on synchronized infinite grids, SIAM J. Math. Anal., 50 (2018), 2409-2440.
doi: 10.1137/17M1122955. |
[23] |
U. Mosco and M. A. Vivaldi, On the external approximation of Sobolev spaces by M–convergence, to appear. |
show all references
References:
[1] |
G. Aronsson, L. C. Evans and Y. Wu,
Fast/slow diffusion and growing sandpiles, J. Differential Equations, 131 (1996), 304-335.
doi: 10.1006/jdeq.1996.0166. |
[2] |
P. Bak, C. Tang and K. Wiesenfeld,
Self-organized criticality, Phys. Rev. A (3), 38 (1988), 364-374.
doi: 10.1103/PhysRevA.38.364. |
[3] |
P. Bántay and I. M. Jánosi,
Avalanche dynamics from anomalous diffusion, Phys. Rev. Lett., 68 (1992), 2058-2061.
|
[4] |
V. Barbu, Nonlinear Semi-Groups and Differential Equations in Banach Spaces, Noordhoff: Leyden, 1976. |
[5] |
V. Barbu, Nonlinear Differential Equations of Monotone Type in Banach Spaces, Springer: NewYork, 2010.
doi: 10.1007/978-1-4419-5542-5. |
[6] |
V. Barbu,
Self-organized criticality and convergence to equilibrium of solutions to nonlinear diffusion problems, Annual Reviews in Control, JARAP, 340 (2010), 52-61.
|
[7] |
V. Barbu,
Self-organized criticality of cellular automata model; absorbtion in finite-time of supercritical region into the critical one, Mathematical Methods in the Applied Sciences, 36 (2013), 1726-1733.
doi: 10.1002/mma.2718. |
[8] |
V. Barbu, G. Da Prato and M. Röckner,
Stochastic porous media equations and self- organized criticality, Comm. Math. Phys., 285 (2009), 901-923.
doi: 10.1007/s00220-008-0651-x. |
[9] |
J. W. Barrett and L. Prigozhin,
Sandpiles and superconductors: Nonconforming linear finite element approximations for mixed formulations of quasi-variational, IMA J. Numer. Anal., 35 (2015), 1-38.
doi: 10.1093/imanum/drt062. |
[10] |
H. Brézis, Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, Ed. L.Nachbin North-Hollands/ Americal Elsevier, 1973. |
[11] | |
[12] |
H. Brézis and A. Pazy,
Accretive sets and differential equations in Banach spaces, Israel J. Math., 8 (1970), 367-383.
doi: 10.1007/BF02798683. |
[13] |
J. M. Carlson, J. T. Chayes, E. R. Grannan and G. H. Swindle,
Self-organized criticality in sandpiles: Nature of the critical phenomenon, Phys. Rev. A (3), 42 (1990), 2467-2470.
doi: 10.1103/PhysRevA.42.2467. |
[14] |
J. M. Carlson and G. H. Swindle,
Self-organized criticality: Sandpiles, singularities, and scaling, Proc. Nat. Acad. Sci. USA, 92 (1995), 6712-6719.
doi: 10.1073/pnas.92.15.6712. |
[15] |
M. G. Crandall and T. M. Liggett,
Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93 (1971), 265-298.
doi: 10.2307/2373376. |
[16] |
M. Creutz,
Abelian sandpiles, Nucl. Phys. B (Proc. Suppl.), 20 (1991), 758-761.
|
[17] |
D. Dahr,
Self-organized critical state of sandpile automaton models, Phys. Rev. Lett., 64 (1990), 1613-1616.
doi: 10.1103/PhysRevLett.64.1613. |
[18] |
L. C. Evans, M. Feldman and R. F. Gariepy,
Fast/slow diffusion and collapsing sandpiles, J. Differential Equations, 137 (1997), 166-209.
doi: 10.1006/jdeq.1997.3243. |
[19] |
B. Gess,
Finite time extinction for stochastic sign fast diffusion and self-organized criticality, Comm. Math. Phys., 335 (2015), 309-344.
doi: 10.1007/s00220-014-2225-4. |
[20] |
U. Mosco,
Convergence of convex sets and of solutions of variational inequalities, Adv. in Math., 3 (1969), 510-585.
doi: 10.1016/0001-8708(69)90009-7. |
[21] |
U. Mosco, An Introduction to the approximate solution of variational inequalities, In: Constructive Aspects of Functional Analysis. Cime Summer Schools Erice, (ed. G. Geymonat), Springer, 57 (1971), 497–685. |
[22] |
U. Mosco,
Finite -time self - organized - criticality on synchronized infinite grids, SIAM J. Math. Anal., 50 (2018), 2409-2440.
doi: 10.1137/17M1122955. |
[23] |
U. Mosco and M. A. Vivaldi, On the external approximation of Sobolev spaces by M–convergence, to appear. |
[1] |
Claire david@lmm.jussieu.fr David, Pierre Sagaut. Theoretical optimization of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 286-293. doi: 10.3934/proc.2007.2007.286 |
[2] |
Tadahisa Funaki, Hirofumi Izuhara, Masayasu Mimura, Chiyori Urabe. A link between microscopic and macroscopic models of self-organized aggregation. Networks and Heterogeneous Media, 2012, 7 (4) : 705-740. doi: 10.3934/nhm.2012.7.705 |
[3] |
Lih-Ing W. Roeger. Dynamically consistent discrete Lotka-Volterra competition models derived from nonstandard finite-difference schemes. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 415-429. doi: 10.3934/dcdsb.2008.9.415 |
[4] |
Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234 |
[5] |
Emma Hoarau, Claire david@lmm.jussieu.fr David, Pierre Sagaut, Thiên-Hiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495-505. doi: 10.3934/proc.2007.2007.495 |
[6] |
Dirk Helbing, Jan Siegmeier, Stefan Lämmer. Self-organized network flows. Networks and Heterogeneous Media, 2007, 2 (2) : 193-210. doi: 10.3934/nhm.2007.2.193 |
[7] |
Gianluca Frasca-Caccia, Peter E. Hydon. Locally conservative finite difference schemes for the modified KdV equation. Journal of Computational Dynamics, 2019, 6 (2) : 307-323. doi: 10.3934/jcd.2019015 |
[8] |
Roumen Anguelov, Jean M.-S. Lubuma, Meir Shillor. Dynamically consistent nonstandard finite difference schemes for continuous dynamical systems. Conference Publications, 2009, 2009 (Special) : 34-43. doi: 10.3934/proc.2009.2009.34 |
[9] |
Boris Andreianov, Mostafa Bendahmane, Kenneth H. Karlsen, Charles Pierre. Convergence of discrete duality finite volume schemes for the cardiac bidomain model. Networks and Heterogeneous Media, 2011, 6 (2) : 195-240. doi: 10.3934/nhm.2011.6.195 |
[10] |
Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 221-238. doi: 10.3934/dcdsb.2008.10.221 |
[11] |
Bernard Ducomet, Alexander Zlotnik, Ilya Zlotnik. On a family of finite-difference schemes with approximate transparent boundary conditions for a generalized 1D Schrödinger equation. Kinetic and Related Models, 2009, 2 (1) : 151-179. doi: 10.3934/krm.2009.2.151 |
[12] |
Stelian Ion, Gabriela Marinoschi. A self-organizing criticality mathematical model for contamination and epidemic spreading. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 383-405. doi: 10.3934/dcdsb.2017018 |
[13] |
Raimund Bürger, Kenneth H. Karlsen, John D. Towers. On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux. Networks and Heterogeneous Media, 2010, 5 (3) : 461-485. doi: 10.3934/nhm.2010.5.461 |
[14] |
Patrick Flynn, Quinton Neville, Arnd Scheel. Self-organized clusters in diffusive run-and-tumble processes. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1187-1208. doi: 10.3934/dcdss.2020069 |
[15] |
Pierre Degond, Silke Henkes, Hui Yu. Self-organized hydrodynamics with density-dependent velocity. Kinetic and Related Models, 2017, 10 (1) : 193-213. doi: 10.3934/krm.2017008 |
[16] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[17] |
Takeshi Fukao, Shuji Yoshikawa, Saori Wada. Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1915-1938. doi: 10.3934/cpaa.2017093 |
[18] |
Jeongho Kim, Bora Moon. Finite difference methods for the one-dimensional Chern-Simons gauged models. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022003 |
[19] |
Navnit Jha. Nonpolynomial spline finite difference scheme for nonlinear singuiar boundary value problems with singular perturbation and its mechanization. Conference Publications, 2013, 2013 (special) : 355-363. doi: 10.3934/proc.2013.2013.355 |
[20] |
Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]