We study an interval exchange transformation of $ [0, 1] $ formed by cutting the interval at the points $ \frac{1}{n} $ and reversing the order of the intervals. We find that the transformation is periodic away from a Cantor set of Hausdorff dimension zero. On the Cantor set, the dynamics are nearly conjugate to the $ 2 $–adic odometer.
Citation: |
[1] |
S. Akiyama and E. Harriss, Pentagonal domain exchange, Discrete Contin. Dyn. Syst., 33 (2013), 4375-4400.
doi: 10.3934/dcds.2013.33.4375.![]() ![]() ![]() |
[2] |
J. P. Bowman, The complete family of Arnoux-Yoccoz surfaces, Geometriae Dedicata, 164 (2013), 113-130.
doi: 10.1007/s10711-012-9762-9.![]() ![]() ![]() |
[3] |
R. Chamanara, Affine automorphism groups of surfaces of infinite type, In the Tradition of Ahlfors and Bers, III, Contemp. Math., American Mathematical Society, Providence, RI, 355 (2004), 123-145.
doi: 10.1090/conm/355/06449.![]() ![]() ![]() |
[4] |
V. Delecroix, Package Surface_Dynamics for SageMath, the Sage Mathematics Software System, 2018, http://www.sagemath.org, https://gitlab.com/videlec/surface_dynamics.
![]() |
[5] |
V. Delecroix, P. Hubert and F. Valdez, Infinite Translation Surfaces in the Wild, To appear.
![]() |
[6] |
T. Downarowicz, Survey of odometers and Toeplitz flows, Algebraic and Topological Dynamics, Contemp. Math., American Mathematical Society, Providence, RI, 385 (2005), 7-37.
doi: 10.1090/conm/385/07188.![]() ![]() ![]() |
[7] |
A. Goetz, A self-similar example of a piecewise isometric attractor, Dynamical Systems: From Crystal to Chaos, World Scientific, River Edge, NJ, (2000), 248–258.
![]() ![]() |
[8] |
A. Goetz, Piecewise isometries - an emerging area of dynamical systems, Fractals in Graz 2001, Trends Math., Birkhäuser, Basel, (2003), 135–144.
![]() ![]() |
[9] |
W. P. Hooper, Renormalization of polygon exchange maps arising from corner percolation, Inventiones Mathematicae, 191 (2013), 255-320.
doi: 10.1007/s00222-012-0393-4.![]() ![]() ![]() |
[10] |
K. Lindsey and R. Treviño, Infinite type flat surface models of ergodic systems, Discrete Contin. Dyn. Syst., 36 (2016), 5509-5553.
doi: 10.3934/dcds.2016043.![]() ![]() ![]() |
[11] |
H. Masur and S. Tabachnikov, Rational billiards and flat structures, Handbook of Dynamical Systems, North-Holland, Amsterdam, 1A (2002), 1015-1089.
doi: 10.1016/S1874-575X(02)80015-7.![]() ![]() ![]() |
[12] |
P. Matilla, Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511623813.![]() ![]() ![]() |
[13] |
N. P. Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Mathematics, 1794. Springer-Verlag, Berlin, 2002.
doi: 10.1007/b13861.![]() ![]() ![]() |
[14] |
R. E. Schwartz, The Octagonal PETs, Mathematical Surveys and Monographs, 197. American Mathematical Society, Providence, RI, 2014.
doi: 10.1090/surv/197.![]() ![]() ![]() |
[15] |
C. E. Silva, Invitation to Ergodic Theory, Student Mathematical Library, 42. American Mathematical Society, Providence, RI, 2008.
![]() ![]() |
[16] |
R. Yi, The triple lattice PETs, Experimental Mathematics, 28, (2019), 456–474.
doi: 10.1080/10586458.2017.1422159.![]() ![]() ![]() |
Top: The interval
The intervals
The construction of the Cantor set