
-
Previous Article
Notes on the values of volume entropy of graphs
- DCDS Home
- This Issue
- Next Article
Renormalizing an infinite rational IET
1. | The City College of New York New York, NY, 10031, USA |
2. | CUNY Graduate Center New York, NY, 10016, USA |
3. | University of Toronto Toronto, ON, M5S 2E4, Canada |
We study an interval exchange transformation of $ [0, 1] $ formed by cutting the interval at the points $ \frac{1}{n} $ and reversing the order of the intervals. We find that the transformation is periodic away from a Cantor set of Hausdorff dimension zero. On the Cantor set, the dynamics are nearly conjugate to the $ 2 $–adic odometer.
References:
[1] |
S. Akiyama and E. Harriss,
Pentagonal domain exchange, Discrete Contin. Dyn. Syst., 33 (2013), 4375-4400.
doi: 10.3934/dcds.2013.33.4375. |
[2] |
J. P. Bowman,
The complete family of Arnoux-Yoccoz surfaces, Geometriae Dedicata, 164 (2013), 113-130.
doi: 10.1007/s10711-012-9762-9. |
[3] |
R. Chamanara,
Affine automorphism groups of surfaces of infinite type, In the Tradition of Ahlfors and Bers, III, Contemp. Math., American Mathematical Society, Providence, RI, 355 (2004), 123-145.
doi: 10.1090/conm/355/06449. |
[4] |
V. Delecroix, Package Surface_Dynamics for SageMath, the Sage Mathematics Software System, 2018, http://www.sagemath.org, https://gitlab.com/videlec/surface_dynamics. |
[5] |
V. Delecroix, P. Hubert and F. Valdez, Infinite Translation Surfaces in the Wild, To appear. |
[6] |
T. Downarowicz,
Survey of odometers and Toeplitz flows, Algebraic and Topological Dynamics, Contemp. Math., American Mathematical Society, Providence, RI, 385 (2005), 7-37.
doi: 10.1090/conm/385/07188. |
[7] |
A. Goetz, A self-similar example of a piecewise isometric attractor, Dynamical Systems: From Crystal to Chaos, World Scientific, River Edge, NJ, (2000), 248–258. |
[8] |
A. Goetz, Piecewise isometries - an emerging area of dynamical systems, Fractals in Graz 2001, Trends Math., Birkhäuser, Basel, (2003), 135–144. |
[9] |
W. P. Hooper,
Renormalization of polygon exchange maps arising from corner percolation, Inventiones Mathematicae, 191 (2013), 255-320.
doi: 10.1007/s00222-012-0393-4. |
[10] |
K. Lindsey and R. Treviño,
Infinite type flat surface models of ergodic systems, Discrete Contin. Dyn. Syst., 36 (2016), 5509-5553.
doi: 10.3934/dcds.2016043. |
[11] |
H. Masur and S. Tabachnikov,
Rational billiards and flat structures, Handbook of Dynamical Systems, North-Holland, Amsterdam, 1A (2002), 1015-1089.
doi: 10.1016/S1874-575X(02)80015-7. |
[12] |
P. Matilla, Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511623813.![]() ![]() ![]() |
[13] |
N. P. Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Mathematics, 1794. Springer-Verlag, Berlin, 2002.
doi: 10.1007/b13861. |
[14] |
R. E. Schwartz, The Octagonal PETs, Mathematical Surveys and Monographs, 197. American Mathematical Society, Providence, RI, 2014.
doi: 10.1090/surv/197. |
[15] |
C. E. Silva, Invitation to Ergodic Theory, Student Mathematical Library, 42. American Mathematical Society, Providence, RI, 2008. |
[16] |
R. Yi, The triple lattice PETs, Experimental Mathematics, 28, (2019), 456–474.
doi: 10.1080/10586458.2017.1422159. |
show all references
References:
[1] |
S. Akiyama and E. Harriss,
Pentagonal domain exchange, Discrete Contin. Dyn. Syst., 33 (2013), 4375-4400.
doi: 10.3934/dcds.2013.33.4375. |
[2] |
J. P. Bowman,
The complete family of Arnoux-Yoccoz surfaces, Geometriae Dedicata, 164 (2013), 113-130.
doi: 10.1007/s10711-012-9762-9. |
[3] |
R. Chamanara,
Affine automorphism groups of surfaces of infinite type, In the Tradition of Ahlfors and Bers, III, Contemp. Math., American Mathematical Society, Providence, RI, 355 (2004), 123-145.
doi: 10.1090/conm/355/06449. |
[4] |
V. Delecroix, Package Surface_Dynamics for SageMath, the Sage Mathematics Software System, 2018, http://www.sagemath.org, https://gitlab.com/videlec/surface_dynamics. |
[5] |
V. Delecroix, P. Hubert and F. Valdez, Infinite Translation Surfaces in the Wild, To appear. |
[6] |
T. Downarowicz,
Survey of odometers and Toeplitz flows, Algebraic and Topological Dynamics, Contemp. Math., American Mathematical Society, Providence, RI, 385 (2005), 7-37.
doi: 10.1090/conm/385/07188. |
[7] |
A. Goetz, A self-similar example of a piecewise isometric attractor, Dynamical Systems: From Crystal to Chaos, World Scientific, River Edge, NJ, (2000), 248–258. |
[8] |
A. Goetz, Piecewise isometries - an emerging area of dynamical systems, Fractals in Graz 2001, Trends Math., Birkhäuser, Basel, (2003), 135–144. |
[9] |
W. P. Hooper,
Renormalization of polygon exchange maps arising from corner percolation, Inventiones Mathematicae, 191 (2013), 255-320.
doi: 10.1007/s00222-012-0393-4. |
[10] |
K. Lindsey and R. Treviño,
Infinite type flat surface models of ergodic systems, Discrete Contin. Dyn. Syst., 36 (2016), 5509-5553.
doi: 10.3934/dcds.2016043. |
[11] |
H. Masur and S. Tabachnikov,
Rational billiards and flat structures, Handbook of Dynamical Systems, North-Holland, Amsterdam, 1A (2002), 1015-1089.
doi: 10.1016/S1874-575X(02)80015-7. |
[12] |
P. Matilla, Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511623813.![]() ![]() ![]() |
[13] |
N. P. Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Mathematics, 1794. Springer-Verlag, Berlin, 2002.
doi: 10.1007/b13861. |
[14] |
R. E. Schwartz, The Octagonal PETs, Mathematical Surveys and Monographs, 197. American Mathematical Society, Providence, RI, 2014.
doi: 10.1090/surv/197. |
[15] |
C. E. Silva, Invitation to Ergodic Theory, Student Mathematical Library, 42. American Mathematical Society, Providence, RI, 2008. |
[16] |
R. Yi, The triple lattice PETs, Experimental Mathematics, 28, (2019), 456–474.
doi: 10.1080/10586458.2017.1422159. |


[1] |
Sze-Bi Hsu, Bernold Fiedler, Hsiu-Hau Lin. Classification of potential flows under renormalization group transformation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 437-446. doi: 10.3934/dcdsb.2016.21.437 |
[2] |
Ivan Dynnikov, Alexandra Skripchenko. Minimality of interval exchange transformations with restrictions. Journal of Modern Dynamics, 2017, 11: 219-248. doi: 10.3934/jmd.2017010 |
[3] |
Christopher F. Novak. Discontinuity-growth of interval-exchange maps. Journal of Modern Dynamics, 2009, 3 (3) : 379-405. doi: 10.3934/jmd.2009.3.379 |
[4] |
Luca Marchese. The Khinchin Theorem for interval-exchange transformations. Journal of Modern Dynamics, 2011, 5 (1) : 123-183. doi: 10.3934/jmd.2011.5.123 |
[5] |
Jon Chaika. Hausdorff dimension for ergodic measures of interval exchange transformations. Journal of Modern Dynamics, 2008, 2 (3) : 457-464. doi: 10.3934/jmd.2008.2.457 |
[6] |
Sébastien Ferenczi, Pascal Hubert. Rigidity of square-tiled interval exchange transformations. Journal of Modern Dynamics, 2019, 14: 153-177. doi: 10.3934/jmd.2019006 |
[7] |
María Isabel Cortez, Samuel Petite. Realization of big centralizers of minimal aperiodic actions on the Cantor set. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2891-2901. doi: 10.3934/dcds.2020153 |
[8] |
Yiming Ding. Renormalization and $\alpha$-limit set for expanding Lorenz maps. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 979-999. doi: 10.3934/dcds.2011.29.979 |
[9] |
Jon Chaika, Howard Masur. There exists an interval exchange with a non-ergodic generic measure. Journal of Modern Dynamics, 2015, 9: 289-304. doi: 10.3934/jmd.2015.9.289 |
[10] |
Jon Chaika, David Damanik, Helge Krüger. Schrödinger operators defined by interval-exchange transformations. Journal of Modern Dynamics, 2009, 3 (2) : 253-270. doi: 10.3934/jmd.2009.3.253 |
[11] |
Jacek Brzykcy, Krzysztof Frączek. Disjointness of interval exchange transformations from systems of probabilistic origin. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 53-73. doi: 10.3934/dcds.2010.27.53 |
[12] |
Corinna Ulcigrai. Weak mixing for logarithmic flows over interval exchange transformations. Journal of Modern Dynamics, 2009, 3 (1) : 35-49. doi: 10.3934/jmd.2009.3.35 |
[13] |
Davit Karagulyan. Hausdorff dimension of a class of three-interval exchange maps. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1257-1281. doi: 10.3934/dcds.2020077 |
[14] |
Jon Chaika, Alex Eskin. Möbius disjointness for interval exchange transformations on three intervals. Journal of Modern Dynamics, 2019, 14: 55-86. doi: 10.3934/jmd.2019003 |
[15] |
Michal Málek, Peter Raith. Stability of the distribution function for piecewise monotonic maps on the interval. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2527-2539. doi: 10.3934/dcds.2018105 |
[16] |
Jozef Bobok, Martin Soukenka. On piecewise affine interval maps with countably many laps. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 753-762. doi: 10.3934/dcds.2011.31.753 |
[17] |
Ye Yuan, Yan Ren, Xiaodong Liu, Jing Wang. Approach to image segmentation based on interval neutrosophic set. Numerical Algebra, Control and Optimization, 2020, 10 (1) : 1-11. doi: 10.3934/naco.2019028 |
[18] |
A. Pedas, G. Vainikko. Smoothing transformation and piecewise polynomial projection methods for weakly singular Fredholm integral equations. Communications on Pure and Applied Analysis, 2006, 5 (2) : 395-413. doi: 10.3934/cpaa.2006.5.395 |
[19] |
Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Renormalization of two-dimensional piecewise linear maps: Abundance of 2-D strange attractors. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 941-966. doi: 10.3934/dcds.2018040 |
[20] |
Daniel Schnellmann. Typical points for one-parameter families of piecewise expanding maps of the interval. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 877-911. doi: 10.3934/dcds.2011.31.877 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]