Volume entropy is an important invariant of metric graphs as well as Riemannian manifolds. In this note, we calculate the change of volume entropy when an edge is added to a metric graph or when a vertex and edges around it are added. In the second part, we estimate the value of the volume entropy which can be used to suggest an algorithm for calculating the persistent volume entropy of graphs.
Citation: |
[1] |
F. Balacheff, Volume entropy, weighted girths and stable balls on graphs, Journal of Graph Theory, 55 (2007), 291-305.
doi: 10.1002/jgt.20236.![]() ![]() ![]() |
[2] |
G. Besson, G. Courtois and S. Gallot, Volume et entropie minimale des espaces localement symétriques, Inventiones Mathematicae, 103 (1991), 417-445.
doi: 10.1007/BF01239520.![]() ![]() ![]() |
[3] |
A. Broise-Alamichel, J. Parkkonen and F. Paulin, Equidistribution and Counting under Equilibrium States in Negatively Curved Spaces and Graphs of Groups, Progress Mathematics, 329. Birkhäuser, 2019.
![]() |
[4] |
G. Carlsson, Topology and data, Bull. Amer. Math. Soc. (N.S.), 46 (2009), 255-308.
doi: 10.1090/S0273-0979-09-01249-X.![]() ![]() ![]() |
[5] |
S. Karam, Growth of balls in the universal cover of surfaces and graphs, Trans. Amer. Math. Soc., 367 (2015), 5355-5373.
doi: 10.1090/S0002-9947-2015-06189-3.![]() ![]() ![]() |
[6] |
H. Lee, E. Kim, H. Kang, Y. Huh, Y. Lee, S. Lim and D. S. Lee, Volume entropy and information flow in a brain graph, Sci. Rep., 9 (2019), 256.
doi: 10.1038/s41598-018-36339-7.![]() ![]() |
[7] |
S. Lim, Minimal volume entropy for graphs, Trans. Amer. Math. Soc., 360 (2008), 5089-5100.
doi: 10.1090/S0002-9947-08-04227-X.![]() ![]() ![]() |
[8] |
S. Lim, Entropy rigidity for metric spaces, The Pure and Applied Mathematics of Korea Society of Mathematical Education, 19 (2012), 73-86.
doi: 10.7468/jksmeb.2012.19.1.73.![]() ![]() ![]() |
[9] |
A. Manning, Topological entropy for geodesic flows, Annals of Mathematics (2), 110 (1979), 567-573.
doi: 10.2307/1971239.![]() ![]() ![]() |
[10] |
C. T. McMullen, Entropy and the clique polynomial, Journal of Topology, 8 (2015), 184-212.
doi: 10.1112/jtopol/jtu022.![]() ![]() ![]() |
[11] |
M. Pollicott, Asymptotic vertex growth for graphs, Spectrum and Dynamics, CRM Proc. Lecture Notes, Amer. Math. Soc., Providence, RI, 52 (2010), 137-145.
![]() ![]() |
[12] |
W. X. Sun, Topological entropy and the complete invariant for expansive maps, Nonlinearity, 13 (2000), 663-673.
doi: 10.1088/0951-7715/13/3/309.![]() ![]() ![]() |
[13] |
Z. H. Xia and P. F. Zhang, Exponential growth rate of paths and its connection with dynamics, Progress in Variational Methods, Nankai Ser. Pure Appl. Math. Theoret. Phys., World Sci. Publ., Hackensack, NJ, 7 (2011), 212-224.
![]() ![]() |