-
Previous Article
Reducibility of quasi-periodically forced circle flows
- DCDS Home
- This Issue
-
Next Article
Equidistribution of curves in homogeneous spaces and Dirichlet's approximation theorem for matrices
Interior and boundary regularity for the Navier-Stokes equations in the critical Lebesgue spaces
Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02912, USA |
We study regularity criteria for the $ d $-dimensional incompressible Navier-Stokes equations. We prove if $ u\in L_{\infty}^tL_d^x((0,T)\times{\mathbb{R}}^d_+) $ is a Leray-Hopf weak solution vanishing on the boundary, then $ u $ is regular up to the boundary in $ (0,T)\times {\mathbb{R}}^d_+ $. Furthermore, with a stronger uniform local condition on the pressure $ p $, we prove $ u $ is unique and tends to zero as $ t\rightarrow \infty $ if $ T = \infty $. This generalizes a result by Escauriaza, Seregin, and Šverák [
References:
[1] |
D. Albritton and T. Barker, Global weak Besov solutions of the Navier-Stokes equations and applications, e-prints, (2018). |
[2] |
D. Albritton,
Blow-up criteria for the Navier-Stokes equations in non-endpoint critical Besov spaces, Anal. PDE, 11 (2018), 1415-1456.
doi: 10.2140/apde.2018.11.1415. |
[3] |
T. Barker and G. Seregin,
A necessary condition of potential blowup for the Navier-Stokes system in half-space, Math. Ann., 369 (2017), 1327-1352.
doi: 10.1007/s00208-016-1488-9. |
[4] |
L. Caffarelli, R. Kohn and L. Nirenberg,
Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831.
doi: 10.1002/cpa.3160350604. |
[5] |
A. Cheskidov and R. Shvydkoy,
The regularity of weak solutions of the 3D Navier-Stokes equations in $B^{-1}_{\infty,\infty}$, Arch. Ration. Mech. Anal., 195 (2010), 159-169.
doi: 10.1007/s00205-009-0265-2. |
[6] |
F. Chiarenza, M. Frasca and P. Longo,
Interior $W^{2,p}$ estimates for nondivergence elliptic equations with discontinuous coefficients, Ricerche Mat., 40 (1991), 149-168.
|
[7] |
H. J. Dong and D. P. Du,
Partial regularity of solutions to the four-dimensional Navier-Stokes equations at the first blow-up time, Comm. Math. Phys., 273 (2007), 785-801.
doi: 10.1007/s00220-007-0259-6. |
[8] |
H. J. Dong and D. P. Du,
The Navier-Stokes equations in the critical Lebesgue space, Comm. Math. Phys., 292 (2009), 811-827.
doi: 10.1007/s00220-009-0852-y. |
[9] |
H. J. Dong and X. M. Gu,
Partial regularity of solutions to the four-dimensional Navier-Stokes equations, Dyn. Partial Differ. Equ., 11 (2014), 53-69.
doi: 10.4310/DPDE.2014.v11.n1.a3. |
[10] |
H. J. Dong and X. M. Gu,
Boundary partial regularity for the high dimensional Navier-Stokes equations, J. Funct. Anal., 267 (2014), 2606-2637.
doi: 10.1016/j.jfa.2014.08.001. |
[11] |
H. J. Dong and D. Li,
Optimal local smoothing and analyticity rate estimates for the generalized Navier-Stokes equations, Commun. Math. Sci., 7 (2009), 67-80.
doi: 10.4310/CMS.2009.v7.n1.a3. |
[12] |
H. J. Dong and R. M. Strain,
On partial regularity of steady-state solutions to the 6D Navier-Stokes equations, Indiana Univ. Math. J., 61 (2012), 2211-2229.
doi: 10.1512/iumj.2012.61.4765. |
[13] |
H. J. Dong and K. R. Wang,
Boundary $\varepsilon$-regularity criteria for the 3D Navier-Stokes equations, SIAM J. Math. Anal., 52 (2020), 1290-1309.
doi: 10.1137/18M1234722. |
[14] |
L. Escauriaza, G. A. Sëregin and V. Sverak,
Sëregin-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk, 58 (2003), 3-44.
doi: 10.1070/RM2003v058n02ABEH000609. |
[15] |
L. Escauriaza, G. Seregin and V. Šverák,
On backward uniqueness for parabolic equations, Arch. Ration. Mech. Anal., 169 (2003), 147-157.
doi: 10.1007/s00205-003-0263-8. |
[16] |
I. Gallagher, G. S. Koch and F. Planchon,
Blow-up of critical Besov norms at a potential Navier-Stokes singularity, Comm. Math. Phys., 343 (2016), 39-82.
doi: 10.1007/s00220-016-2593-z. |
[17] |
M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, 105. Princeton University Press, Princeton, NJ, 1983.
![]() ![]() |
[18] |
Y. Giga,
Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 62 (1986), 186-212.
doi: 10.1016/0022-0396(86)90096-3. |
[19] |
Y. Giga and T. Miyakawa,
Solutions in $L_r$ of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267-281.
doi: 10.1007/BF00276875. |
[20] |
Y. Giga and O. Sawada,
On regularizing-decay rate estimates for solutions to the Navier-Stokes initial value problem, Nonlinear Analysis and Applications, Kluwer Acad. Publ., Dordrecht, 1,2 (2003), 549-562.
|
[21] |
C. Guevara and N. C. Phuc, Local energy bounds and $\epsilon$-regularity criteria for the 3D Navier-Stokes system, Calc. Var. Partial Differential Equations, 56 (2017), Art. 68, 16 pp.
doi: 10.1007/s00526-017-1151-7. |
[22] |
E. Hopf,
Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1951), 213-231.
doi: 10.1002/mana.3210040121. |
[23] |
C. Kahane,
On the spatial analyticity of solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 33 (1969), 386-405.
doi: 10.1007/BF00247697. |
[24] |
T. Kato,
Strong $L^p$-solutions of the Navier-Stokes equation in Rm, with applications to weak solutions, Math. Z., 187 (1984), 471-480.
doi: 10.1007/BF01174182. |
[25] |
C. E. Kenig and G. S. Koch,
An alternative approach to regularity for the Navier-Stokes equations in critical spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 159-187.
doi: 10.1016/j.anihpc.2010.10.004. |
[26] |
H. Koch and D. Tataru,
Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.
doi: 10.1006/aima.2000.1937. |
[27] |
O. A. Ladyženskaja,
Uniqueness and smoothness of generalized solutions of Navier-Stokes equations, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 5 (1967), 169-185.
|
[28] |
O. A. Ladyzhenskaya and G. A. Seregin,
On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations, J. Math. Fluid Mech., 1 (1999), 356-387.
doi: 10.1007/s000210050015. |
[29] |
J. Leray, Étude de diverses équations intérales non linéaires et de quelques problemes que pose l’hydrodynamique, NUMDAM, (1933), 82 pp. |
[30] |
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996.
doi: 10.1142/3302. |
[31] |
F. H. Lin,
A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure Appl. Math., 51 (1998), 241-257.
doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A. |
[32] |
P. Maremonti and V. A. Solonnikov, On estimates for the solutions of the nonstationary Stokes problem in S. L. Sobolev anisotropic spaces with a mixed norm, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 222 (1995), no. Issled. po Lineĭn. Oper. i Teor. Funktsiĭ. 23,124-150,309.
doi: 10.1007/BF02355828. |
[33] |
K. Masuda,
On the analyticity and the unique continuation theorem for solutions of the Navier-Stokes equation, Proc. Japan Acad., 43 (1967), 827-832.
doi: 10.3792/pja/1195521421. |
[34] |
A. S. Mikhailov and T. N. Shilkin, $L_3,\infty$-solutions to the 3D-Navier-Stokes system in the domain with a curved boundary, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 336 (2006), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 37,133–152,276.
doi: 10.1007/s10958-007-0176-4. |
[35] |
N. C. Phuc,
The Navier-Stokes equations in nonendpoint borderline Lorentz spaces, J. Math. Fluid Mech., 17 (2015), 741-760.
doi: 10.1007/s00021-015-0229-2. |
[36] |
G. Prodi,
Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl. (4), 48 (1959), 173-182.
doi: 10.1007/BF02410664. |
[37] |
V. Scheffer,
Partial regularity of solutions to the Navier-Stokes equations, Pacific J. Math., 66 (1976), 535-552.
doi: 10.2140/pjm.1976.66.535. |
[38] |
V. Scheffer,
Hausdorff measure and the Navier-Stokes equations, Comm. Math. Phys., 55 (1977), 97-112.
doi: 10.1007/BF01626512. |
[39] |
V. Scheffer,
The Navier-Stokes equations on a bounded domain, Comm. Math. Phys., 73 (1980), 1-42.
doi: 10.1007/BF01942692. |
[40] |
G. A. Seregin, Some estimates near the boundary for solutions to the non-stationary linearized Navier-Stokes equations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 271 (2000), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 31,204–223,317.
doi: 10.1023/A:1023330105200. |
[41] |
G. A. Seregin,
Local regularity of suitable weak solutions to the Navier-Stokes equations near the boundary, J. Math. Fluid Mech., 4 (2002), 1-29.
doi: 10.1007/s00021-002-8533-z. |
[42] |
G. Seregin,
On smoothness of $L_3,\infty$-solutions to the Navier-Stokes equations up to boundary, Math. Ann., 332 (2005), 219-238.
doi: 10.1007/s00208-004-0625-z. |
[43] |
G. A. Seregin, A note on local boundary regularity for the Stokes system, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 370 (2009), Kraevye Zadachi Matematicheskoĭ Fiziki i Smezhnye Voprosy Teorii Funktsiĭ. 40, 151–159, 221–222.
doi: 10.1007/s10958-010-9847-7. |
[44] |
G. A. Seregin, T. N. Shilkin and V. A. Solonnikov, Boundary partial regularity for the Navier-Stokes equations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 310 (2004), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 35 [34], 158–190,228.
doi: 10.1007/s10958-005-0502-7. |
[45] |
J. Serrin,
On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 9 (1962), 187-195.
doi: 10.1007/BF00253344. |
[46] |
J. Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Problems, Univ. of Wisconsin Press, Madison, Wis., (1963), 69–98. |
[47] |
M. Struwe,
On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 437-458.
doi: 10.1002/cpa.3160410404. |
[48] |
M. E. Taylor,
Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial Differential Equations, 17 (1992), 1407-1456.
doi: 10.1080/03605309208820892. |
[49] |
A. F. Vasseur,
A new proof of partial regularity of solutions to Navier-Stokes equations, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 753-785.
doi: 10.1007/s00030-007-6001-4. |
[50] |
W. von Wahl, The Equations of Navier-Stokes and Abstract Parabolic Equations, Aspects of Mathematics, E8, Friedr. Vieweg & Sohn, Braunschweig, 1985.
doi: 10.1007/978-3-663-13911-9. |
[51] |
W. D. Wang and Z. F. Zhang,
Blow-up of critical norms for the 3-D Navier-Stokes equations, Sci. China Math., 60 (2017), 637-650.
doi: 10.1007/s11425-016-0344-5. |
[52] |
F. B. Weissler,
The Navier-Stokes initial value problem in $L^p$, Arch. Rational Mech. Anal., 74 (1980), 219-230.
doi: 10.1007/BF00280539. |
show all references
References:
[1] |
D. Albritton and T. Barker, Global weak Besov solutions of the Navier-Stokes equations and applications, e-prints, (2018). |
[2] |
D. Albritton,
Blow-up criteria for the Navier-Stokes equations in non-endpoint critical Besov spaces, Anal. PDE, 11 (2018), 1415-1456.
doi: 10.2140/apde.2018.11.1415. |
[3] |
T. Barker and G. Seregin,
A necessary condition of potential blowup for the Navier-Stokes system in half-space, Math. Ann., 369 (2017), 1327-1352.
doi: 10.1007/s00208-016-1488-9. |
[4] |
L. Caffarelli, R. Kohn and L. Nirenberg,
Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831.
doi: 10.1002/cpa.3160350604. |
[5] |
A. Cheskidov and R. Shvydkoy,
The regularity of weak solutions of the 3D Navier-Stokes equations in $B^{-1}_{\infty,\infty}$, Arch. Ration. Mech. Anal., 195 (2010), 159-169.
doi: 10.1007/s00205-009-0265-2. |
[6] |
F. Chiarenza, M. Frasca and P. Longo,
Interior $W^{2,p}$ estimates for nondivergence elliptic equations with discontinuous coefficients, Ricerche Mat., 40 (1991), 149-168.
|
[7] |
H. J. Dong and D. P. Du,
Partial regularity of solutions to the four-dimensional Navier-Stokes equations at the first blow-up time, Comm. Math. Phys., 273 (2007), 785-801.
doi: 10.1007/s00220-007-0259-6. |
[8] |
H. J. Dong and D. P. Du,
The Navier-Stokes equations in the critical Lebesgue space, Comm. Math. Phys., 292 (2009), 811-827.
doi: 10.1007/s00220-009-0852-y. |
[9] |
H. J. Dong and X. M. Gu,
Partial regularity of solutions to the four-dimensional Navier-Stokes equations, Dyn. Partial Differ. Equ., 11 (2014), 53-69.
doi: 10.4310/DPDE.2014.v11.n1.a3. |
[10] |
H. J. Dong and X. M. Gu,
Boundary partial regularity for the high dimensional Navier-Stokes equations, J. Funct. Anal., 267 (2014), 2606-2637.
doi: 10.1016/j.jfa.2014.08.001. |
[11] |
H. J. Dong and D. Li,
Optimal local smoothing and analyticity rate estimates for the generalized Navier-Stokes equations, Commun. Math. Sci., 7 (2009), 67-80.
doi: 10.4310/CMS.2009.v7.n1.a3. |
[12] |
H. J. Dong and R. M. Strain,
On partial regularity of steady-state solutions to the 6D Navier-Stokes equations, Indiana Univ. Math. J., 61 (2012), 2211-2229.
doi: 10.1512/iumj.2012.61.4765. |
[13] |
H. J. Dong and K. R. Wang,
Boundary $\varepsilon$-regularity criteria for the 3D Navier-Stokes equations, SIAM J. Math. Anal., 52 (2020), 1290-1309.
doi: 10.1137/18M1234722. |
[14] |
L. Escauriaza, G. A. Sëregin and V. Sverak,
Sëregin-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk, 58 (2003), 3-44.
doi: 10.1070/RM2003v058n02ABEH000609. |
[15] |
L. Escauriaza, G. Seregin and V. Šverák,
On backward uniqueness for parabolic equations, Arch. Ration. Mech. Anal., 169 (2003), 147-157.
doi: 10.1007/s00205-003-0263-8. |
[16] |
I. Gallagher, G. S. Koch and F. Planchon,
Blow-up of critical Besov norms at a potential Navier-Stokes singularity, Comm. Math. Phys., 343 (2016), 39-82.
doi: 10.1007/s00220-016-2593-z. |
[17] |
M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, 105. Princeton University Press, Princeton, NJ, 1983.
![]() ![]() |
[18] |
Y. Giga,
Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 62 (1986), 186-212.
doi: 10.1016/0022-0396(86)90096-3. |
[19] |
Y. Giga and T. Miyakawa,
Solutions in $L_r$ of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267-281.
doi: 10.1007/BF00276875. |
[20] |
Y. Giga and O. Sawada,
On regularizing-decay rate estimates for solutions to the Navier-Stokes initial value problem, Nonlinear Analysis and Applications, Kluwer Acad. Publ., Dordrecht, 1,2 (2003), 549-562.
|
[21] |
C. Guevara and N. C. Phuc, Local energy bounds and $\epsilon$-regularity criteria for the 3D Navier-Stokes system, Calc. Var. Partial Differential Equations, 56 (2017), Art. 68, 16 pp.
doi: 10.1007/s00526-017-1151-7. |
[22] |
E. Hopf,
Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1951), 213-231.
doi: 10.1002/mana.3210040121. |
[23] |
C. Kahane,
On the spatial analyticity of solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 33 (1969), 386-405.
doi: 10.1007/BF00247697. |
[24] |
T. Kato,
Strong $L^p$-solutions of the Navier-Stokes equation in Rm, with applications to weak solutions, Math. Z., 187 (1984), 471-480.
doi: 10.1007/BF01174182. |
[25] |
C. E. Kenig and G. S. Koch,
An alternative approach to regularity for the Navier-Stokes equations in critical spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 159-187.
doi: 10.1016/j.anihpc.2010.10.004. |
[26] |
H. Koch and D. Tataru,
Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.
doi: 10.1006/aima.2000.1937. |
[27] |
O. A. Ladyženskaja,
Uniqueness and smoothness of generalized solutions of Navier-Stokes equations, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 5 (1967), 169-185.
|
[28] |
O. A. Ladyzhenskaya and G. A. Seregin,
On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations, J. Math. Fluid Mech., 1 (1999), 356-387.
doi: 10.1007/s000210050015. |
[29] |
J. Leray, Étude de diverses équations intérales non linéaires et de quelques problemes que pose l’hydrodynamique, NUMDAM, (1933), 82 pp. |
[30] |
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996.
doi: 10.1142/3302. |
[31] |
F. H. Lin,
A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure Appl. Math., 51 (1998), 241-257.
doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A. |
[32] |
P. Maremonti and V. A. Solonnikov, On estimates for the solutions of the nonstationary Stokes problem in S. L. Sobolev anisotropic spaces with a mixed norm, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 222 (1995), no. Issled. po Lineĭn. Oper. i Teor. Funktsiĭ. 23,124-150,309.
doi: 10.1007/BF02355828. |
[33] |
K. Masuda,
On the analyticity and the unique continuation theorem for solutions of the Navier-Stokes equation, Proc. Japan Acad., 43 (1967), 827-832.
doi: 10.3792/pja/1195521421. |
[34] |
A. S. Mikhailov and T. N. Shilkin, $L_3,\infty$-solutions to the 3D-Navier-Stokes system in the domain with a curved boundary, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 336 (2006), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 37,133–152,276.
doi: 10.1007/s10958-007-0176-4. |
[35] |
N. C. Phuc,
The Navier-Stokes equations in nonendpoint borderline Lorentz spaces, J. Math. Fluid Mech., 17 (2015), 741-760.
doi: 10.1007/s00021-015-0229-2. |
[36] |
G. Prodi,
Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl. (4), 48 (1959), 173-182.
doi: 10.1007/BF02410664. |
[37] |
V. Scheffer,
Partial regularity of solutions to the Navier-Stokes equations, Pacific J. Math., 66 (1976), 535-552.
doi: 10.2140/pjm.1976.66.535. |
[38] |
V. Scheffer,
Hausdorff measure and the Navier-Stokes equations, Comm. Math. Phys., 55 (1977), 97-112.
doi: 10.1007/BF01626512. |
[39] |
V. Scheffer,
The Navier-Stokes equations on a bounded domain, Comm. Math. Phys., 73 (1980), 1-42.
doi: 10.1007/BF01942692. |
[40] |
G. A. Seregin, Some estimates near the boundary for solutions to the non-stationary linearized Navier-Stokes equations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 271 (2000), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 31,204–223,317.
doi: 10.1023/A:1023330105200. |
[41] |
G. A. Seregin,
Local regularity of suitable weak solutions to the Navier-Stokes equations near the boundary, J. Math. Fluid Mech., 4 (2002), 1-29.
doi: 10.1007/s00021-002-8533-z. |
[42] |
G. Seregin,
On smoothness of $L_3,\infty$-solutions to the Navier-Stokes equations up to boundary, Math. Ann., 332 (2005), 219-238.
doi: 10.1007/s00208-004-0625-z. |
[43] |
G. A. Seregin, A note on local boundary regularity for the Stokes system, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 370 (2009), Kraevye Zadachi Matematicheskoĭ Fiziki i Smezhnye Voprosy Teorii Funktsiĭ. 40, 151–159, 221–222.
doi: 10.1007/s10958-010-9847-7. |
[44] |
G. A. Seregin, T. N. Shilkin and V. A. Solonnikov, Boundary partial regularity for the Navier-Stokes equations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 310 (2004), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 35 [34], 158–190,228.
doi: 10.1007/s10958-005-0502-7. |
[45] |
J. Serrin,
On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 9 (1962), 187-195.
doi: 10.1007/BF00253344. |
[46] |
J. Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Problems, Univ. of Wisconsin Press, Madison, Wis., (1963), 69–98. |
[47] |
M. Struwe,
On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 437-458.
doi: 10.1002/cpa.3160410404. |
[48] |
M. E. Taylor,
Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial Differential Equations, 17 (1992), 1407-1456.
doi: 10.1080/03605309208820892. |
[49] |
A. F. Vasseur,
A new proof of partial regularity of solutions to Navier-Stokes equations, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 753-785.
doi: 10.1007/s00030-007-6001-4. |
[50] |
W. von Wahl, The Equations of Navier-Stokes and Abstract Parabolic Equations, Aspects of Mathematics, E8, Friedr. Vieweg & Sohn, Braunschweig, 1985.
doi: 10.1007/978-3-663-13911-9. |
[51] |
W. D. Wang and Z. F. Zhang,
Blow-up of critical norms for the 3-D Navier-Stokes equations, Sci. China Math., 60 (2017), 637-650.
doi: 10.1007/s11425-016-0344-5. |
[52] |
F. B. Weissler,
The Navier-Stokes initial value problem in $L^p$, Arch. Rational Mech. Anal., 74 (1980), 219-230.
doi: 10.1007/BF00280539. |
[1] |
Reinhard Farwig, Paul Felix Riechwald. Regularity criteria for weak solutions of the Navier-Stokes system in general unbounded domains. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 157-172. doi: 10.3934/dcdss.2016.9.157 |
[2] |
Francesca Crispo, Paolo Maremonti. A remark on the partial regularity of a suitable weak solution to the Navier-Stokes Cauchy problem. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1283-1294. doi: 10.3934/dcds.2017053 |
[3] |
Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161 |
[4] |
Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215 |
[5] |
Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the existence of solutions for the Navier-Stokes system in a sum of weak-$L^{p}$ spaces. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 171-183. doi: 10.3934/dcds.2010.27.171 |
[6] |
Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure and Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747 |
[7] |
Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083 |
[8] |
Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure and Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35 |
[9] |
Daniel Pardo, José Valero, Ángel Giménez. Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3569-3590. doi: 10.3934/dcdsb.2018279 |
[10] |
Fang Li, Bo You, Yao Xu. Dynamics of weak solutions for the three dimensional Navier-Stokes equations with nonlinear damping. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4267-4284. doi: 10.3934/dcdsb.2018137 |
[11] |
Jian-Guo Liu, Zhaoyun Zhang. Existence of global weak solutions of $ p $-Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 469-486. doi: 10.3934/dcdsb.2021051 |
[12] |
Jiří Neustupa. A note on local interior regularity of a suitable weak solution to the Navier--Stokes problem. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1391-1400. doi: 10.3934/dcdss.2013.6.1391 |
[13] |
Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319 |
[14] |
Tomoyuki Suzuki. Regularity criteria in weak spaces in terms of the pressure to the MHD equations. Conference Publications, 2011, 2011 (Special) : 1335-1343. doi: 10.3934/proc.2011.2011.1335 |
[15] |
Yukang Chen, Changhua Wei. Partial regularity of solutions to the fractional Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5309-5322. doi: 10.3934/dcds.2016033 |
[16] |
Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic and Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545 |
[17] |
Zijin Li, Xinghong Pan. Some Remarks on regularity criteria of Axially symmetric Navier-Stokes equations. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1333-1350. doi: 10.3934/cpaa.2019064 |
[18] |
Fei Jiang, Song Jiang, Junpin Yin. Global weak solutions to the two-dimensional Navier-Stokes equations of compressible heat-conducting flows with symmetric data and forces. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 567-587. doi: 10.3934/dcds.2014.34.567 |
[19] |
Minghua Yang, Zunwei Fu, Jinyi Sun. Global solutions to Chemotaxis-Navier-Stokes equations in critical Besov spaces. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3427-3460. doi: 10.3934/dcdsb.2018284 |
[20] |
Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]