Advanced Search
Article Contents
Article Contents

Time periodic solution to a coupled chemotaxis-fluid model with porous medium diffusion

This work is supported by NSFC(11871230), Guangdong Basic and Applied Basic Research Foundation(2020B1515310013)

Abstract Full Text(HTML) Related Papers Cited by
  • This paper is concerned with the time periodic problem to a coupled chemotaxis-fluid model with porous medium diffusion $ \Delta n^m $. The global existence of solutios for the initial and boundary value problem of this model have been studied by many authors, and in particular, the global solvability is established for $ m>\frac65 $ in dimension 3. Here, taking advantage of a double-level approximation scheme, we establish the existence of uniformly bounded time periodic solution for any $ m\ge \frac 65 $ and any large periodic source $ g(x, t) $. In particular, the energy estimates techniques we used also applicable to the proof of global existence of the initial-boundary value problem, and one can supply the existence of global solutions for $ m = \frac65 $ by this method.

    Mathematics Subject Classification: Primary: 35B10, 92C17; Secondary: 35M10, 35D30.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. BlanchetJ. A. Carrillo and P. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35 (2009), 133-168.  doi: 10.1007/s00526-008-0200-7.
    [2] X. Cao and J. Lankeit, Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities, Calc. Var. Partial Differential Equations, 55 (2016), 39pp. doi: 10.1007/s00526-016-1027-2.
    [3] T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations, 252 (2012), 5832-5851.  doi: 10.1016/j.jde.2012.01.045.
    [4] T. Cieślak and C. Stinner, Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2, Acta Appl. Math., 129 (2014), 135-146.  doi: 10.1007/s10440-013-9832-5.
    [5] T. Cieślak and M. Winkler, Stabilization in a higher-dimensional quasilinear Keller-Segel system with exponentially decaying diffusivity and subcritical sensitivity, Nonlinear Anal., 159 (2017), 129-144.  doi: 10.1016/j.na.2016.04.013.
    [6] E. Espejo and T. Suzuki, Reaction terms avoiding aggregation in slow fluids, Nonlinear Anal. Real World Appl., 21 (2015), 110-126.  doi: 10.1016/j.nonrwa.2014.07.001.
    [7] C. Jin, Large time periodic solutions to coupled chemotaxis-fluid models, Z. Angew. Math. Phys., 68 (2017), 24pp. doi: 10.1007/s00033-017-0882-9.
    [8] C. Jin, Large time periodic solution to the coupled chemotaxis-Stokes model, Math. Nachr., 290 (2017), 1701-1715.  doi: 10.1002/mana.201600180.
    [9] C. Jin, Periodic pattern formation in the coupled chemotaxis-(Navier-)Stokes system with mixed nonhomogeneous boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, (2019). doi: 10.1017/prm.2019.62.
    [10] P. Laurençot and N. Mizoguchi, Finite time blowup for the parabolic-parabolic Keller-Segel system with critical diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 197-220.  doi: 10.1016/j.anihpc.2015.11.002.
    [11] Y. Li and J. Lankeit, Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion, Nonlinearity, 29 (2016), 1564-1595.  doi: 10.1088/0951-7715/29/5/1564.
    [12] J.-G. Liu and A. Lorz, A coupled chemotaxis-fluid model: Global existence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 643-652.  doi: 10.1016/j.anihpc.2011.04.005.
    [13] J. Liu and Y. Wang, Boundedness and decay property in a three-dimensional Keller-Segel-Stokes system involving tensor-valued sensitivity with saturation, J. Differential Equations, 261 (2016), 967-999.  doi: 10.1016/j.jde.2016.03.030.
    [14] N. Mizoguchi and P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 851-875.  doi: 10.1016/j.anihpc.2013.07.007.
    [15] Y. Peng and Z. Xiang, Global existence and convergence rates to a chemotaxis-fluids system with mixed boundary conditions, J. Differential Equations, 267 (2019), 1277-1321.  doi: 10.1016/j.jde.2019.02.007.
    [16] Y. Tao and M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., 43 (2011), 685-704.  doi: 10.1137/100802943.
    [17] Y. Tao and M. Winkler, Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Z. Angew. Math. Phys., 66 (2015), 2555-2573.  doi: 10.1007/s00033-015-0541-y.
    [18] Y. Tao and M. Winkler, Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system, Z. Angew. Math. Phys., 67 (2016), 23pp. doi: 10.1007/s00033-016-0732-1.
    [19] Y. Wang, Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, J. Differential Equations, 260 (2016), 1975-1989.  doi: 10.1016/j.jde.2015.09.051.
    [20] M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.  doi: 10.1080/03605302.2011.591865.
    [21] M. Winkler, A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: Global weak solutions and asymptotic stabilization, J. Funct. Anal., 276 (2019), 1339-1401.  doi: 10.1016/j.jfa.2018.12.009.
    [22] M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal., 211 (2014), 455-487.  doi: 10.1007/s00205-013-0678-9.
    [23] M. Winkler, Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1329-1352.  doi: 10.1016/j.anihpc.2015.05.002.
    [24] M. Winkler, How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?, Trans. Amer. Math. Soc., 369 (2017), 3067-3125.  doi: 10.1090/tran/6733.
    [25] J. Zheng, Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, Discrete Contin. Dyn. Syst., 37 (2017), 627-643.  doi: 10.3934/dcds.2017026.
  • 加载中

Article Metrics

HTML views(1061) PDF downloads(335) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint