• PDF
• Cite
• Share
Article Contents  Article Contents

# Global existence and scattering of equivariant defocusing Chern-Simons-Schrödinger system

• In this paper, we consider the following equivariant defocusing Chern-Simons-Schrödinger system,

$\begin{eqnarray}i\partial_{t}\phi+\Delta\phi = \frac{2m}{r^2}A_{\theta}\phi+A_{0}\phi+\frac{1}{r^2}A_{\theta}^2\phi-\lambda|\phi|^{p-2}\phi,\\ \partial_rA_{0} = \frac{1}{r}(m+A_{\theta})|\phi|^2,\\ \partial_tA_{\theta} = rIm(\bar{\phi}\partial_{r}\phi),\\ \partial_rA_{\theta} = -\frac{1}{2}|\phi|^2r,\\ A_r = 0.\end{eqnarray}$

where $\phi(t, x_1, x_2): \mathbb{R}^{1+2}\rightarrow \mathbb{R}$ is a complex scalar field, $A_\mu(t, x_1, x_2): \mathbb{R}^{1+2}\rightarrow \mathbb{R}$ is the gauge field for $\mu = 0, 1, 2$, $A_r = \frac{x_1}{|x|}A_1+\frac{x_2}{|x|}A_2$, $A_{\theta} = -x_2A_1+x_1A_2$, $\lambda<0$ and $p>4$.

When $p>4$, the system is in the mass supercritical and energy subcrtical range. By using the conservation law of the system and the concentration compactness method introduced in , we show that the solution of the system exists globally and scatters.

Mathematics Subject Classification: 35A01, 35Q41, 35Q55.

 Citation: • • ## Article Metrics  DownLoad:  Full-Size Img  PowerPoint