-
Previous Article
Analysis of a spatial memory model with nonlocal maturation delay and hostile boundary condition
- DCDS Home
- This Issue
-
Next Article
Evolution of dispersal in advective homogeneous environments
Existence of positive solutions of Schrödinger equations with vanishing potentials
1. | Departamento de Matemática, Universidade Federal de Juiz de Fora, Juiz de Fora, CEP 36036-330, Minas Gerais, Brazil |
2. | Departamento de Matematica y C. C., Universidad de Santiago de Chile, Casilla 307, Correo 2, Santiago, Chile |
$ \mathbb{R}^N $ |
$ - \Delta u + V(x) u = f(x, u) \ \ \text{in} \ \mathbb{R}^N $ |
$ f $ |
$ \frac{f(x, s)}{s} $ |
References:
[1] |
C. O. Alves and M. A. S. Souto,
Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity, Journal of Differential Equations, 254 (2013), 1977-1991.
doi: 10.1016/j.jde.2012.11.013. |
[2] |
A. Ambrosetti, V. Felli and A. Malchiodi,
Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc. (JEMS), 7 (2005), 117-144.
doi: 10.4171/JEMS/24. |
[3] |
A. Ambrosetti and Z.-Q. Wang,
Nonlinear Schrödinger equations with vanishing and decaying potentials, Differential Integral Equations, 18 (2005), 1321-1332.
|
[4] |
D. Bonheure and J. Van Schaftingen,
Groundstates for the nonlinear Schrödinger equation with potential vanishing at infinity, Ann. Mat. Pura Appl., 189 (2010), 273-301.
doi: 10.1007/s10231-009-0109-6. |
[5] |
H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, New York: Springer, 2011. |
[6] |
R. de Marchi,
Schrödinger equations with asymptotically periodic terms, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 745-757.
doi: 10.1017/S0308210515000104. |
[7] |
Y. Ding and C. Lee,
Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms, J. Differential Equations, 222 (2006), 137-163.
doi: 10.1016/j.jde.2005.03.011. |
[8] |
D. Gilbard and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, Vol. 224. Springer-Verlag, Berlin-New York, 1977. |
[9] |
Q. Han,
Compact embedding results of Sobolev spaces and existence of positive solutions to quasilinear equations, Bull. Sci. Math., 141 (2017), 46-71.
doi: 10.1016/j.bulsci.2015.11.005. |
[10] |
W. Kryszewski and A. Szulkin,
Generalized linking theorem with an application to semilinear Schrödinger equation, Adv. Differential Equations, 3 (1998), 441-471.
|
[11] |
G. Li and A. Szulkin,
An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math., 4 (2002), 763-776.
doi: 10.1142/S0219199702000853. |
[12] |
Y. Li, Z.-Q. Wang and J. Zeng,
Ground states of nonlinear Schrödinger equations with potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 829-837.
doi: 10.1016/j.anihpc.2006.01.003. |
[13] |
S. Liu,
On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, 45 (2012), 1-9.
doi: 10.1007/s00526-011-0447-2. |
[14] |
A. Pankov,
Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73 (2005), 259-287.
doi: 10.1007/s00032-005-0047-8. |
[15] |
C. A. Stuart,
Locating Cerami sequences in a mountain pass geometry, Commun. Appl. Anal., 15 (2011), 569-588.
|
[16] |
A. Szulkin and T. Weth,
Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822.
doi: 10.1016/j.jfa.2009.09.013. |
show all references
References:
[1] |
C. O. Alves and M. A. S. Souto,
Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity, Journal of Differential Equations, 254 (2013), 1977-1991.
doi: 10.1016/j.jde.2012.11.013. |
[2] |
A. Ambrosetti, V. Felli and A. Malchiodi,
Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc. (JEMS), 7 (2005), 117-144.
doi: 10.4171/JEMS/24. |
[3] |
A. Ambrosetti and Z.-Q. Wang,
Nonlinear Schrödinger equations with vanishing and decaying potentials, Differential Integral Equations, 18 (2005), 1321-1332.
|
[4] |
D. Bonheure and J. Van Schaftingen,
Groundstates for the nonlinear Schrödinger equation with potential vanishing at infinity, Ann. Mat. Pura Appl., 189 (2010), 273-301.
doi: 10.1007/s10231-009-0109-6. |
[5] |
H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, New York: Springer, 2011. |
[6] |
R. de Marchi,
Schrödinger equations with asymptotically periodic terms, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 745-757.
doi: 10.1017/S0308210515000104. |
[7] |
Y. Ding and C. Lee,
Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms, J. Differential Equations, 222 (2006), 137-163.
doi: 10.1016/j.jde.2005.03.011. |
[8] |
D. Gilbard and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, Vol. 224. Springer-Verlag, Berlin-New York, 1977. |
[9] |
Q. Han,
Compact embedding results of Sobolev spaces and existence of positive solutions to quasilinear equations, Bull. Sci. Math., 141 (2017), 46-71.
doi: 10.1016/j.bulsci.2015.11.005. |
[10] |
W. Kryszewski and A. Szulkin,
Generalized linking theorem with an application to semilinear Schrödinger equation, Adv. Differential Equations, 3 (1998), 441-471.
|
[11] |
G. Li and A. Szulkin,
An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math., 4 (2002), 763-776.
doi: 10.1142/S0219199702000853. |
[12] |
Y. Li, Z.-Q. Wang and J. Zeng,
Ground states of nonlinear Schrödinger equations with potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 829-837.
doi: 10.1016/j.anihpc.2006.01.003. |
[13] |
S. Liu,
On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, 45 (2012), 1-9.
doi: 10.1007/s00526-011-0447-2. |
[14] |
A. Pankov,
Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73 (2005), 259-287.
doi: 10.1007/s00032-005-0047-8. |
[15] |
C. A. Stuart,
Locating Cerami sequences in a mountain pass geometry, Commun. Appl. Anal., 15 (2011), 569-588.
|
[16] |
A. Szulkin and T. Weth,
Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822.
doi: 10.1016/j.jfa.2009.09.013. |
[1] |
Jianqing Chen. Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1613-1628. doi: 10.3934/dcdss.2016066 |
[2] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure and Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[3] |
Yongsheng Jiang, Huan-Song Zhou. A sharp decay estimate for nonlinear Schrödinger equations with vanishing potentials. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1723-1730. doi: 10.3934/cpaa.2010.9.1723 |
[4] |
Juan Arratia, Denilson Pereira, Pedro Ubilla. Elliptic systems involving Schrödinger operators with vanishing potentials. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1369-1401. doi: 10.3934/dcds.2021156 |
[5] |
Guofa Li, Yisheng Huang. Positive solutions for critical quasilinear Schrödinger equations with potentials vanishing at infinity. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3971-3989. doi: 10.3934/dcdsb.2021214 |
[6] |
Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations and Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016 |
[7] |
Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger equations with vanishing potentials involving Brezis-Kamin type problems. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2947-2969. doi: 10.3934/dcds.2020392 |
[8] |
Bartosz Bieganowski, Jaros law Mederski. Nonlinear SchrÖdinger equations with sum of periodic and vanishing potentials and sign-changing nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (1) : 143-161. doi: 10.3934/cpaa.2018009 |
[9] |
Mingwen Fei, Huicheng Yin. Nodal solutions of 2-D critical nonlinear Schrödinger equations with potentials vanishing at infinity. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2921-2948. doi: 10.3934/dcds.2015.35.2921 |
[10] |
Liejun Shen, Marco Squassina, Minbo Yang. Critical gauged Schrödinger equations in $ \mathbb{R}^2 $ with vanishing potentials. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022059 |
[11] |
Holger Teismann. The Schrödinger equation with singular time-dependent potentials. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 705-722. doi: 10.3934/dcds.2000.6.705 |
[12] |
Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613 |
[13] |
Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102 |
[14] |
Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3027-3042. doi: 10.3934/dcdss.2021031 |
[15] |
Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure and Applied Analysis, 2008, 7 (1) : 83-88. doi: 10.3934/cpaa.2008.7.83 |
[16] |
Yavar Kian, Alexander Tetlow. Hölder-stable recovery of time-dependent electromagnetic potentials appearing in a dynamical anisotropic Schrödinger equation. Inverse Problems and Imaging, 2020, 14 (5) : 819-839. doi: 10.3934/ipi.2020038 |
[17] |
Lihui Chai, Shi Jin, Qin Li. Semi-classical models for the Schrödinger equation with periodic potentials and band crossings. Kinetic and Related Models, 2013, 6 (3) : 505-532. doi: 10.3934/krm.2013.6.505 |
[18] |
Yingte Sun. Floquet solutions for the Schrödinger equation with fast-oscillating quasi-periodic potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4531-4543. doi: 10.3934/dcds.2021047 |
[19] |
Russell Johnson, Luca Zampogni. Some examples of generalized reflectionless Schrödinger potentials. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1149-1170. doi: 10.3934/dcdss.2016046 |
[20] |
Yinbin Deng, Yi Li, Xiujuan Yan. Nodal solutions for a quasilinear Schrödinger equation with critical nonlinearity and non-square diffusion. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2487-2508. doi: 10.3934/cpaa.2015.14.2487 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]