\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Extended symmetry groups of multidimensional subshifts with hierarchical structure

The author is supported by ANID-PFCHA/Doctorado Nacional/2017-21171061 (formerly CONICYT). Please check the Acknowledgments section below for further details

Abstract Full Text(HTML) Figure(12) Related Papers Cited by
  • The centralizer (automorphism group) and normalizer (extended symmetry group) of the shift action inside the group of self-homeomorphisms are studied, in the context of certain $ \mathbb{Z}^d $ subshifts with a hierarchical supertile structure, such as bijective substitutive subshifts and the Robinson tiling. Restrictions on these groups via geometrical considerations are used to characterize explicitly their structure: nontrivial extended symmetries can always be described via relabeling maps and rigid transformations of the Euclidean plane permuting the coordinate axes. The techniques used also carry over to the well-known Robinson tiling, both in its minimal and non-minimal versions.

    Mathematics Subject Classification: 37B10, 37B51, 20B27, 52C23.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  An example of applying a rectangular substitution to a pattern

    Figure 4.  Points from the two-dimensional Thue-Morse substitution. The first two configurations correspond to (the central pattern of) two points $ x, y\in\mathsf{X}_{\theta_{\text TM}} $ matching exactly in one half-plane, as in Lemma 4.4. The third configuration is an "illegal" point $ z\in\mathsf{X}_{\theta_{\text TM}}^*\setminus\mathsf{X}_{\theta_{\text TM}} $ from the extended substitutive subshift. The associated seeds and substitution rule are shown below

    Figure 2.  $ 2^n\times 2^n $ grids associated with the iterates of a primitive substitution $ \theta $ in a point from a substitutive subshift. The corresponding substitution is indicated on the right

    Figure 3.  In the figure, we see how $ x|_{K_{\boldsymbol{p}}} = \theta^m(a) $ (for some $ a\in\mathcal{A} $) determines $ f(x)|_{K_{\boldsymbol{p}}^{\circ r}} $ and, in particular, $ f(x)|_{I_{\boldsymbol{p}}} $. Since the substitution is bijective, this forces $ f(x)|_{L_{\boldsymbol{p}}} $ to equal $ \theta^m(b) $ for some $ b\in\mathcal{A} $ which depends solely on $ a $

    Figure 5.  The situation in the proof of Lemma 4.6. As the side length of the rectangles associated with the substitution increases exponentially, the inner product $ \langle\boldsymbol{v}, \boldsymbol{w}\rangle $ which determines whether $ \boldsymbol{w} $ belongs to $ S $ or $ S' $ (or neither) takes sufficiently many different (integer) values inside any of these rectangles to ensure that at least one such rectangle intersects both $ S $ and $ S' $

    Figure 6.  The five types of Robinson tiles, resulting in an alphabet of $ 28 $ symbols after applying all possible rotations and reflections. The third tile is usually called a cross

    Figure 7.  The formation of a second order supertile of size $ 3\times 3 $

    Figure 8.  A fragment of a point from the Robinson shift, distinguishing the four supertiles involved, the vertical and horizontal strips of tiles separating each supertile and the $ 2\mathbb{Z}\times 2\mathbb{Z} $ sublattice that contains only crosses. Note that the tiles in the vertical strip separating the supertiles are copies of the first tile of Figure 6 with the same orientation

    Figure 9.  Two possible ways in which the tiling from Figure 8 exhibits fracture-like behavior, resulting in valid points from $ X_{\text Rob} $

    Figure 10.  The substructure of a point of $ X_{\text Rob} $ in terms of $ n $-th order supertiles. Note how all supertiles overlap either $ S^+ $ or $ S^- $

    Figure 11.  How a shift by $ k_1\boldsymbol{q} $ makes the arrangement of supertiles in $ S^+ $ not match with the corresponding tiles in $ S^- $

    Figure 12.  The relabeling map $ \mathfrak{R} $ which replaces each tile with its corresponding rotation by $ \frac{1}{2}\pi $

  • [1] M. Baake, Structure and representations of the hyperoctahedral group, J. Math. Phys., 25 (1984), 3171-3182.  doi: 10.1063/1.526087.
    [2] M. Baake and U. Grimm, Aperiodic Order, vol. 1. A Mathematical Invitation, With a foreword by Roger Penrose. Encyclopedia of Mathematics and its Applications, 149. Cambridge University Press, Cambridge, 2013. doi: 10.1017/CBO9781139025256.
    [3] M. Baake and U. Grimm, Squirals and beyond: Substitution tilings with singular continuous spectrum, Ergodic Theory Dynam. Systems, 34 (2014), 1077–1102, arXiv: 1205.1384. doi: 10.1017/etds.2012.191.
    [4] M. Baake, J. A. G. Roberts and R. Yassawi, Reversing and extended symmetries of shift spaces, Discrete Cont. Dyn. Syst., 38 (2018), 835–866, arXiv: 1611.05756. doi: 10.3934/dcds.2018036.
    [5] M. M. Boyle, Topological Orbit Equivalence and Factor Maps in Symbolic Dynamics, PhD thesis, University of Washington, 1983.
    [6] M. BoyleD. Lind and D. Rudolph, The automorphism group of a shift of finite type, Trans. Amer. Math. Soc., 306 (1988), 71-114.  doi: 10.1090/S0002-9947-1988-0927684-2.
    [7] M. Boyle and J. Tomiyama, Bounded topological orbit equivalence and ${C}^*$-algebras, J. Math. Soc. Japan, 50 (1998), 317-329.  doi: 10.2969/jmsj/05020317.
    [8] T. Ceccherini-Silberstein and M. Coornaert, Cellular automata and groups, Computational Complexity, Springer, New York, 1 (2012), 336–349. doi: 10.1007/978-1-4614-1800-9_23.
    [9] E. M. Coven, Endomorphisms of substitution minimal sets, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 20 (1971), 129-133.  doi: 10.1007/BF00536290.
    [10] E. M. Coven, A. Quas and R. Yassawi, Computing automorphism groups of shifts using atypical equivalence classes, Discrete Anal., 2016 (2016), 28 pp, arXiv: 1505.02482. doi: 10.19086/da.611.
    [11] V. Cyr and B. Kra, The automorphism group of a shift of linear growth: Beyond transitivity, Forum Math. Sigma, 3 (2015), e5, 27 pp, arXiv: 1411.0180. doi: 10.1017/fms.2015.3.
    [12] S. Donoso, F. Durand, A. Maass and S. Petite, On automorphism groups of low complexity subshifts, Ergodic Theory Dynam. Systems, 36 (2016), 64–95. arXiv: 1501.00510. doi: 10.1017/etds.2015.70.
    [13] S. Donoso and W. Sun, Dynamical cubes and a criteria for systems having product extensions, J. Mod. Dyn., 9 (2015), 365–405. arXiv: 1406.1220. doi: 10.3934/jmd.2015.9.365.
    [14] N. P. Frank, Multidimensional constant-length substitution sequences, Topology Appl., 152 (2005), 44-69.  doi: 10.1016/j.topol.2004.08.014.
    [15] F. Gähler, Substitution rules and topological properties of the Robinson tilings, in Aperiodic Crystals (eds. S. Schmid, R. L. Withers and R. Lifshitz), Springer, Dordrecht, (2013), 67–73. arXiv: 1210.6468.
    [16] F. Gähler, A. Julien and J. Savinien, Combinatorics and topology of the Robinson tiling, C. R. Math. Acad. Sci. Paris, 350 (2012), 627–631. arXiv: 1203.1387 doi: 10.1016/j.crma.2012.06.007.
    [17] G. R. Goodson, Inverse conjugacies and reversing symmetry groups, Amer. Math. Monthly, 106 (1999), 19-26.  doi: 10.1080/00029890.1999.12005002.
    [18] G. James and A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia of Mathematics and its Applications, 16. Addison-Wesley Publishing Co., Reading, Mass., 1981.
    [19] J. Kellendonk and R. Yassawi, The Ellis semigroup of bijective substitutions, preprint, arXiv: 1908.05690.
    [20] B. P. Kitchens, Symbolic Dynamics. One-sided, Two-sided and Countable State Markov Shifts, Universitext. Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-642-58822-8.
    [21] B. Kitchens and K. Schmidt, Isomorphism rigidity of irreducible algebraic Zd-actions, Invent. Math., 142 (2000), 559-577.  doi: 10.1007/PL00005793.
    [22] P. Kůrka, Topological and Symbolic Dynamics, Société mathématique de France, Paris, 2003.
    [23] M. Lemańczyk and M. K. Mentzen, On metric properties of substitutions, Compositio Math, 65 (1988), 241-263. 
    [24] D. Lind and  B. MarcusAn Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511626302.
    [25] G. R. Maloney and D. Rust, Beyond primitivity for one-dimensional substitution subshifts and tiling spaces, Ergodic Theory Dynam. Systems, 38 (2018), 1086–1117, arXiv: 1604.01246 doi: 10.1017/etds.2016.58.
    [26] G. A. Miller, Groups formed by special matrices, Bull. Am. Math. Soc., 24 (1918), 203-206.  doi: 10.1090/S0002-9904-1918-03043-7.
    [27] B. Mossé, Reconnaissabilité des substitutions et complexité des suites automatiques, Bull. Soc. Math. France, 124 (1996), 329-346.  doi: 10.24033/bsmf.2283.
    [28] A. G. O'Farrell and  I. ShortReversibility in Dynamics and Group Theory, Cambridge University Press, Cambridge, 2015.  doi: 10.1017/CBO9781139998321.
    [29] J. Olli, Endomorphisms of Sturmian systems and the discrete chair substitution tiling system, Discrete Cont. Dyn. Syst., 33 (2013), 4173-4186.  doi: 10.3934/dcds.2013.33.4173.
    [30] N. P. Fogg (ed.), Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Mathematics, 1794. Springer-Verlag, Berlin, 2002. doi: 10.1007/b13861.
    [31] A. M. Robert, A Course in p-adic Analysis, Graduate Texts in Mathematics, 198. Springer-Verlag, New York, 2000. doi: 10.1007/978-1-4757-3254-2.
    [32] R. M. Robinson, Undecidability and nonperiodicity for tilings of the plane, Invent. Math., 12 (1971), 177-209.  doi: 10.1007/BF01418780.
    [33] K. Schmidt, Dynamical Systems of Algebraic Origin, Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 1995.
    [34] B. Solomyak, Nonperiodicity implies unique composition for self-similar translationally finite tilings, Discrete Comput. Geom., 20 (1998), 265-279.  doi: 10.1007/PL00009386.
  • 加载中

Figures(12)

SHARE

Article Metrics

HTML views(196) PDF downloads(202) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return