This paper is mainly concerned with the classification of the general two-component $ \mu $-Camassa-Holm systems with quadratic nonlinearities. As a conclusion of such classification, a two-component $ \mu $-Camassa-Holm system admitting multi-peaked solutions and $ H^1 $-norm conservation law is found, which is a $ \mu $-version of the two-component modified Camassa-Holm system and can be derived from the semidirect-product Euler-Poincaré equations corresponding to a Lagrangian. The local well-posedness for solutions to the initial value problem associated with the two-component $ \mu $-Camassa-Holm system is established. And the precise blow-up scenario, wave breaking phenomena and blow-up rate for solutions of this problem are also investigated.
Citation: |
[1] |
M. S. Alber, R. Camassa, D. D. Holm and J. E. Marsden, The geometry of peaked solitons and billiard solutions of a class of integrable PDEs, Lett. Math. Phys., 32 (1994), 137-151.
doi: 10.1007/BF00739423.![]() ![]() ![]() |
[2] |
R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661.![]() ![]() ![]() |
[3] |
C. Cao, D. D. Holm and E. S. Titi, Traveling wave solutions for a class of one-dimensional nonlinear shallow water wave models, J. Dynam. Differential Equations, 16 (2004), 167-178.
doi: 10.1023/B:JODY.0000041284.26400.d0.![]() ![]() ![]() |
[4] |
R. M. Chen, J. Lenells and Y. Liu, Stability of the $\mu$-Camassa–Holm peakons, J. Nonlinear Sci., 23 (2013), 97-112.
doi: 10.1007/s00332-012-9141-6.![]() ![]() ![]() |
[5] |
M. Chen, S. Liu and Y. Zhang, A two-component generalization of the Camassa–Holm equation and its solutions, Lett. Math. Phys, 75 (2006), 1-15.
doi: 10.1007/s11005-005-0041-7.![]() ![]() ![]() |
[6] |
K.-S. Chou and C. Qu, Integrable equations arising from motions of plane curves, Phys. D, 162 (2002), 9-33.
doi: 10.1016/S0167-2789(01)00364-5.![]() ![]() |
[7] |
A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.
doi: 10.1007/s00222-006-0002-5.![]() ![]() ![]() |
[8] |
A. Constantin, On the blow-up of solutions of a periodic shallow water equation, J. Nonlinear Sci., 10 (2000), 391-399.
doi: 10.1007/s003329910017.![]() ![]() ![]() |
[9] |
A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568.
doi: 10.4007/annals.2011.173.1.12.![]() ![]() ![]() |
[10] |
A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.
doi: 10.1007/BF02392586.![]() ![]() ![]() |
[11] |
A. Constantin, V. S. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207.
doi: 10.1088/0266-5611/22/6/017.![]() ![]() ![]() |
[12] |
A. Constantin, V. S. Gerdjikov and R. I. Ivanov, Generalised Fourier transform for the Camassa–Holm hierarchy, Inverse Problems, 23 (2007), 1565-1597.
doi: 10.1088/0266-5611/23/4/012.![]() ![]() ![]() |
[13] |
A. Constantin and R. I. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132.
doi: 10.1016/j.physleta.2008.10.050.![]() ![]() ![]() |
[14] |
A. Constantin, T. Kappeler, B. Kolev and P. Topalov, On geodesic exponential maps of the Virasoro group, Ann. Global Anal. Geom., 31 (2007), 155-180.
doi: 10.1007/s10455-006-9042-8.![]() ![]() ![]() |
[15] |
A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.
doi: 10.1007/s00205-008-0128-2.![]() ![]() ![]() |
[16] |
A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.
![]() ![]() |
[17] |
K. El Dika and L. Molinet, Stability of multipeakons, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1517-1532.
doi: 10.1016/j.anihpc.2009.02.002.![]() ![]() ![]() |
[18] |
Y. Fu, Y. Liu and C. Qu, Well-posedness and blow-up solution for a modified two-component periodic Camassa-Holm system with peakons, Math. Ann., 348 (2010), 415-448.
doi: 10.1007/s00208-010-0483-9.![]() ![]() ![]() |
[19] |
Y. Fu and C. Qu, Well posedness and blow-up solution for a new coupled Camassa–Holm equations with peakons, J. Math. Phys., 50 (2009), 012906, 25 pp.
doi: 10.1063/1.3064810.![]() ![]() ![]() |
[20] |
B. Fuchssteiner, Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa–Holm equation, Phys. D, 95 (1996), 229-243.
doi: 10.1016/0167-2789(96)00048-6.![]() ![]() ![]() |
[21] |
B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/82), 47-66.
doi: 10.1016/0167-2789(81)90004-X.![]() ![]() ![]() |
[22] |
K. Grunert, H. Holden and X. Raynaud, Global solutions for the two-component Camassa–Holm system, Comm. Partial Differential Equations, 37 (2012), 2245-2271.
doi: 10.1080/03605302.2012.683505.![]() ![]() ![]() |
[23] |
C. Guan and Z. Yin, Global weak solutions for a two-component Camassa–Holm shallow water system, J. Funct. Anal., 260 (2011), 1132-1154.
doi: 10.1016/j.jfa.2010.11.015.![]() ![]() ![]() |
[24] |
C. Guan and Z. Yin, Global weak solutions for a modified two-component Camassa–Holm equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 623-641.
doi: 10.1016/j.anihpc.2011.04.003.![]() ![]() ![]() |
[25] |
G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa–Holm system, J. Funct. Anal., 258 (2010), 4251-4278.
doi: 10.1016/j.jfa.2010.02.008.![]() ![]() ![]() |
[26] |
D. D. Holm, L. Ó Náraigh and C. Tronci, Singular solutions of a modified two-component Camassa-Holm equation, Phys. Rev. E, 79 (2009), 016601, 13 pp.
doi: 10.1103/PhysRevE.79.016601.![]() ![]() ![]() |
[27] |
J. K. Hunter and R. Saxton, Dynamics of director fields, SIAM J. Appl. Math., 51 (1991), 1498-1521.
doi: 10.1137/0151075.![]() ![]() ![]() |
[28] |
R. J. Iorio Jr. and V. de Magalhães Iorio, Fourier Analysis and Partial Differential Equations, Cambridge Studies in Advanced Mathematics, 70, Cambridge University Press, 2001.
doi: 10.1017/CBO9780511623745.![]() ![]() ![]() |
[29] |
R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82.
doi: 10.1017/S0022112001007224.![]() ![]() ![]() |
[30] |
T. Kato and G. Ponce, Communtator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.
doi: 10.1002/cpa.3160410704.![]() ![]() ![]() |
[31] |
B. Khesin, J. Lenells and G. Misiolek, Generalized Hunter–Saxton equation and the geometry of the group of circle diffeomorphisms, Math. Ann., 342 (2008), 617-656.
doi: 10.1007/s00208-008-0250-3.![]() ![]() ![]() |
[32] |
S. Kouranbaeva, The Camassa-Holm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys., 40 (1999), 857-868.
doi: 10.1063/1.532690.![]() ![]() ![]() |
[33] |
J. Lenells, The scattering approach for the Camassa-Holm equation, J. Nonlinear Math. Phys., 9 (2002), 389-393.
doi: 10.2991/jnmp.2002.9.4.2.![]() ![]() ![]() |
[34] |
J. Lenells, G. Misiolek and F. Tiğlay, Integrable evolution equations on spaces of tensor densities and their peakon solutions, Comm. Math. Phys., 299 (2010), 129-161.
doi: 10.1007/s00220-010-1069-9.![]() ![]() ![]() |
[35] |
G. Lv and M. Wang, Some remarks for a modified periodic Camassa–Holm system, Discrete Contin. Dyn. Syst., 30 (2011), 1161-1180.
doi: 10.3934/dcds.2011.30.1161.![]() ![]() ![]() |
[36] |
G. Misiolek, A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys., 24 (1998), 203-208.
doi: 10.1016/S0393-0440(97)00010-7.![]() ![]() ![]() |
[37] |
P. J. Olver, Invariant submanifold flows, J. Phys. A, 41 (2008), 344017, 22 pp.
doi: 10.1088/1751-8113/41/34/344017.![]() ![]() ![]() |
[38] |
P. J. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53 (1996), 1900-1906.
doi: 10.1103/PhysRevE.53.1900.![]() ![]() ![]() |
[39] |
J. Schiff, The Camassa–Holm equation: A loop group approach, Phys. D, 121 (1998), 24-43.
doi: 10.1016/S0167-2789(98)00099-2.![]() ![]() ![]() |
[40] |
W. Tan and Z. Yin, Global conservative solutions of a modified two-component Camassa–Holm shallow water system, J. Differential Equations, 251 (2011), 3558-3582.
doi: 10.1016/j.jde.2011.08.010.![]() ![]() ![]() |
[41] |
W. Tan and Z. Yin, Global periodic conservative solutions of a periodic modified two-component Camassa–Holm equation, J. Funct. Anal., 261 (2011), 1204-1226.
doi: 10.1016/j.jfa.2011.04.015.![]() ![]() ![]() |
[42] |
J. F. Toland, Stokes waves, Topol. Methods Nonlinear Anal., 8 (1996), 413-414.
doi: 10.12775/TMNA.1996.001.![]() ![]() ![]() |
[43] |
X. Wu and B. Guo, Persistence properties and infinite propagation for the modified periodic 2-component Camassa–Holm quation, Discrete Contin. Dyn. Syst., 33 (2013), 3211-3223.
doi: 10.3934/dcds.2013.33.3211.![]() ![]() ![]() |
[44] |
W. Yan and Y. Li, The Cauchy problem for the modified two-component Camassa–Holm system in critical Besov space, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 443-469.
doi: 10.1016/j.anihpc.2014.01.003.![]() ![]() ![]() |
[45] |
Z. Yin, On the Cauchy problem for an integrable equation with peakon solutions, Illinois J. Math., 47 (2003), 649-666.
doi: 10.1215/ijm/1258138186.![]() ![]() ![]() |
[46] |
D. Zuo, A two-component $\mu$-Hunter-Saxton equation, Inverse Problems, 26 (2010), 085003, 9 pp.
doi: 10.1088/0266-5611/26/8/085003.![]() ![]() ![]() |