• Previous Article
    Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation
  • DCDS Home
  • This Issue
  • Next Article
    Symmetry and nonexistence results for a fractional Choquard equation with weights
February  2021, 41(2): 507-523. doi: 10.3934/dcds.2020266

The unique measure of maximal entropy for a compact rank one locally CAT(0) space

Department of Mathematical Sciences, Binghamton University, Binghamton, NY 13902, USA

Received  October 2019 Revised  April 2020 Published  July 2020

Fund Project: The author would like to thank three anonymous referees, who all made helpful suggestions to improve the paper. The author was partially supported by NSF RTG 1045119

Let $ X $ be a compact, geodesically complete, locally CAT(0) space such that the universal cover admits a rank one axis. We prove the Bowen-Margulis measure on the space of geodesics is the unique measure of maximal entropy for the geodesic flow, which has topological entropy equal to the critical exponent of the Poincaré series.

Citation: Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266
References:
[1]

W. Ballmann, Lectures on Spaces of Nonpositive Curvature, vol. 25 of DMV Seminar, Birkhäuser Verlag, Basel, 1995, With an appendix by Misha Brin. doi: 10.1007/978-3-0348-9240-7.  Google Scholar

[2]

R. Bowen, Entropy-expansive maps, Trans. Amer. Math. Soc., 164 (1972), 323-331.  doi: 10.1090/S0002-9947-1972-0285689-X.  Google Scholar

[3]

M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, vol. 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1999. doi: 10.1007/978-3-662-12494-9.  Google Scholar

[4]

R. Engelking, Theory of Dimensions Finite and Infinite, vol. 10 of Sigma Series in Pure Mathematics, Heldermann Verlag, Lemgo, 1995.  Google Scholar

[5]

B. Kleiner, The local structure of length spaces with curvature bounded above, Math. Z., 231 (1999), 409-456.  doi: 10.1007/PL00004738.  Google Scholar

[6]

G. Knieper, The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds, Ann. of Math. (2), 148 (1998), 291-314.  doi: 10.2307/120995.  Google Scholar

[7]

A. Lytchak and K. Nagano, Geodesically complete spaces with an upper curvature bound, Geom. Funct. Anal., 29 (2019), 295-342.  doi: 10.1007/s00039-019-00483-7.  Google Scholar

[8]

A. Manning, Topological entropy for geodesic flows, Ann. of Math. (2), 110 (1979), 567-573.  doi: 10.2307/1971239.  Google Scholar

[9]

R. Ricks, Flat strips, Bowen-Margulis measures, and mixing of the geodesic flow for rank one $ {\rm{CAT}} $(0) spaces, Ergodic Theory Dynam. Systems, 37 (2017), 939-970.  doi: 10.1017/etds.2015.78.  Google Scholar

[10]

E. L. Swenson, A cut point theorem for $ {\rm{CAT}} $(0) groups, J. Differential Geom., 53 (1999), 327-358.  doi: 10.4310/jdg/1214425538.  Google Scholar

[11]

P. Walters, An Introduction to Ergodic Theory, vol. 79 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1982.  Google Scholar

show all references

References:
[1]

W. Ballmann, Lectures on Spaces of Nonpositive Curvature, vol. 25 of DMV Seminar, Birkhäuser Verlag, Basel, 1995, With an appendix by Misha Brin. doi: 10.1007/978-3-0348-9240-7.  Google Scholar

[2]

R. Bowen, Entropy-expansive maps, Trans. Amer. Math. Soc., 164 (1972), 323-331.  doi: 10.1090/S0002-9947-1972-0285689-X.  Google Scholar

[3]

M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, vol. 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1999. doi: 10.1007/978-3-662-12494-9.  Google Scholar

[4]

R. Engelking, Theory of Dimensions Finite and Infinite, vol. 10 of Sigma Series in Pure Mathematics, Heldermann Verlag, Lemgo, 1995.  Google Scholar

[5]

B. Kleiner, The local structure of length spaces with curvature bounded above, Math. Z., 231 (1999), 409-456.  doi: 10.1007/PL00004738.  Google Scholar

[6]

G. Knieper, The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds, Ann. of Math. (2), 148 (1998), 291-314.  doi: 10.2307/120995.  Google Scholar

[7]

A. Lytchak and K. Nagano, Geodesically complete spaces with an upper curvature bound, Geom. Funct. Anal., 29 (2019), 295-342.  doi: 10.1007/s00039-019-00483-7.  Google Scholar

[8]

A. Manning, Topological entropy for geodesic flows, Ann. of Math. (2), 110 (1979), 567-573.  doi: 10.2307/1971239.  Google Scholar

[9]

R. Ricks, Flat strips, Bowen-Margulis measures, and mixing of the geodesic flow for rank one $ {\rm{CAT}} $(0) spaces, Ergodic Theory Dynam. Systems, 37 (2017), 939-970.  doi: 10.1017/etds.2015.78.  Google Scholar

[10]

E. L. Swenson, A cut point theorem for $ {\rm{CAT}} $(0) groups, J. Differential Geom., 53 (1999), 327-358.  doi: 10.4310/jdg/1214425538.  Google Scholar

[11]

P. Walters, An Introduction to Ergodic Theory, vol. 79 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1982.  Google Scholar

Figure 1.  Shadows of $ p $ on $ \partial X $, from basepoints $ x \in X $ (left) and $ \xi \in \partial X $ (right)
[1]

Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125

[2]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[3]

Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021017

[4]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[5]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

[6]

Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389

[7]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[8]

Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385

[9]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[10]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[11]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[12]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[13]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[14]

Luis Caffarelli, Fanghua Lin. Nonlocal heat flows preserving the L2 energy. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 49-64. doi: 10.3934/dcds.2009.23.49

[15]

Olivier Pironneau, Alexei Lozinski, Alain Perronnet, Frédéric Hecht. Numerical zoom for multiscale problems with an application to flows through porous media. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 265-280. doi: 10.3934/dcds.2009.23.265

[16]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[17]

Nicholas Geneva, Nicholas Zabaras. Multi-fidelity generative deep learning turbulent flows. Foundations of Data Science, 2020, 2 (4) : 391-428. doi: 10.3934/fods.2020019

[18]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[19]

Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317

[20]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (70)
  • HTML views (258)
  • Cited by (0)

Other articles
by authors

[Back to Top]