-
Previous Article
Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains
- DCDS Home
- This Issue
-
Next Article
The unique measure of maximal entropy for a compact rank one locally CAT(0) space
Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation
Department of Mathematics, University of Science and Technology of China, Hefei, 230026, Anhui, China |
$ \beta $ |
$ C $ |
$ \{a_n\} $ |
$ \begin{equation*} \liminf\limits_{N\to \infty}\frac{1}{N}\sum\limits_{j = 1}^{N}d(f^{a_j}(x),f^{a_j}(y )) = 0 \text{ and } \limsup\limits_{N\to \infty}\frac{1}{N}\sum\limits_{j = 1}^{N}d(f^{a_j}(x),f^{a_j}(y ))>0 \end{equation*} $ |
$ x $ |
$ y $ |
$ C $ |
References:
[1] |
F. Balibrea and V. Jiménez López,
The measure of scrambled sets: a survey, Acta Univ. M. Belii Ser. Math., 7 (1999), 3-11.
|
[2] |
F. Blanchard, W. Huang and L. Snoha,
Topological size of scrambled sets, Colloq. Math., 110 (2008), 293-361.
doi: 10.4064/cm110-2-3. |
[3] |
H. Bruin and V. Jiménez López,
On the Lebesgue measure of Li-Yorke pairs for interval maps, Comm. Math. Phys., 299 (2010), 523-560.
doi: 10.1007/s00220-010-1085-9. |
[4] |
J.-C. Ban and B. Li,
The multifractal spectra for the recurrence rates of beta-transformations, J. Math. Anal. Appl., 420 (2014), 1662-1679.
doi: 10.1016/j.jmaa.2014.06.051. |
[5] |
K. Dajani and C. Kraaikamp, Ergodic Theory of Numbers, Carus Mathematical Monographs, 29. Mathematical Association of America, Washington, DC, 2002. |
[6] |
T. Downarowicz,
Positive topological entropy implies chaos DC2, Proc. Amer. Math. Soc., 142 (2014), 137-149.
doi: 10.1090/S0002-9939-2013-11717-X. |
[7] |
K. Falconer, Fractal Geometry, , Mathematical foundations and applications. Third edition. John Wiley & Sons, Ltd., Chichester, 2014. |
[8] |
C. Fang, W. Huang, Y. Yi and P. Zhang,
Dimensions of stable sets and scrambled sets in positive finite entropy systems, Ergodic Theory Dynam. Systems, 32 (2012), 599-628.
doi: 10.1017/S0143385710000982. |
[9] |
F. Garcia-Ramos and L. Jin,
Mean proximality and mean Li-Yorke chaos, Proc. Amer. Math. Soc., 145 (2017), 2959-2969.
doi: 10.1090/proc/13440. |
[10] |
F. Hofbauer,
$\beta$-Shifts have unique maximal measure, Monatsh. Math., 85 (1978), 189-198.
doi: 10.1007/BF01534862. |
[11] |
W. Huang, J. Li and X. Ye,
Stable sets and mean Li-Yorke chaos in positive entropy systems, J. Funct. Anal., 266 (2014), 3377-3394.
doi: 10.1016/j.jfa.2014.01.005. |
[12] |
T. Y. Li and James A. Yorke,
Period three implies chaos, Amer. Math. Monthly, 82 (1975), 985-992.
doi: 10.1080/00029890.1975.11994008. |
[13] |
K.-S. Lau and L. Shu,
The spectrum of Poincaré recurrence, Ergodic Theory Dynam. Systems, 28 (2008), 1917-1943.
doi: 10.1017/S0143385707001095. |
[14] |
B. Li and J. Wu,
Beta-expansion and continued fraction expansion, J. Math. Anal. Appl., 339 (2008), 1322-1331.
doi: 10.1016/j.jmaa.2007.07.070. |
[15] |
B. Li and Y.-C. Chen,
Chaotic and topological properties of $ \beta $-transformations, J. Math. Anal. Appl., 383 (2011), 585-596.
doi: 10.1016/j.jmaa.2011.05.049. |
[16] |
W. Liu and B. Li,
Chaotic and topological properties of continued fractions, J. Number Theory, 174 (2017), 369-383.
doi: 10.1016/j.jnt.2016.10.019. |
[17] |
J. Li and Y. Qiao,
Mean Li-Yorke chaos along some good sequences, Monatsh. Math., 186 (2018), 153-173.
doi: 10.1007/s00605-017-1086-2. |
[18] |
W.-B. Liu, C. Huang, M.-H. Li and S. Wang, A construction of the scrambled set with full Hausdorff dimension for beta-transformations, Fractals, 26 (2018), 1850005, 10pp.
doi: 10.1142/S0218348X18500056. |
[19] |
B. H. P. de M. e Maia, An Equivalent System for Studying Periodic Points of the Beta-Transformation for a Pisot or a Salem Number, Thesis (Ph.D.)-Universidade Autonoma de Lisboa (Portugal). 2008. |
[20] |
W. Parry,
On the $ \beta $-expansions of real numbers, Acta Math. Acad. Sci. Hungar., 11 (1960), 401-416.
doi: 10.1007/BF02020954. |
[21] |
A. Rényi,
Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar., 8 (1957), 477-493.
doi: 10.1007/BF02020331. |
[22] |
S. Ito and Y. Takahashi,
Markov subshifts and realization of $ \beta $-expansions, J. Math. Soc. Japan, 26 (1974), 33-55.
doi: 10.2969/jmsj/02610033. |
[23] |
B. Schweizer and J. Smítal,
Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc., 344 (1994), 737-754.
doi: 10.1090/S0002-9947-1994-1227094-X. |
[24] |
Y. Wang, E. Chen and X. Zhou,
Mean Li-Yorke chaos for random dynamical systems, J. Differential Equations, 267 (2019), 2239-2260.
doi: 10.1016/j.jde.2019.03.012. |
[25] |
J. C. Xiong,
Hausdorff dimension of a chaotic set of shift of a symbolic space, Sci. China Ser. A, 38 (1995), 696-708.
|
show all references
References:
[1] |
F. Balibrea and V. Jiménez López,
The measure of scrambled sets: a survey, Acta Univ. M. Belii Ser. Math., 7 (1999), 3-11.
|
[2] |
F. Blanchard, W. Huang and L. Snoha,
Topological size of scrambled sets, Colloq. Math., 110 (2008), 293-361.
doi: 10.4064/cm110-2-3. |
[3] |
H. Bruin and V. Jiménez López,
On the Lebesgue measure of Li-Yorke pairs for interval maps, Comm. Math. Phys., 299 (2010), 523-560.
doi: 10.1007/s00220-010-1085-9. |
[4] |
J.-C. Ban and B. Li,
The multifractal spectra for the recurrence rates of beta-transformations, J. Math. Anal. Appl., 420 (2014), 1662-1679.
doi: 10.1016/j.jmaa.2014.06.051. |
[5] |
K. Dajani and C. Kraaikamp, Ergodic Theory of Numbers, Carus Mathematical Monographs, 29. Mathematical Association of America, Washington, DC, 2002. |
[6] |
T. Downarowicz,
Positive topological entropy implies chaos DC2, Proc. Amer. Math. Soc., 142 (2014), 137-149.
doi: 10.1090/S0002-9939-2013-11717-X. |
[7] |
K. Falconer, Fractal Geometry, , Mathematical foundations and applications. Third edition. John Wiley & Sons, Ltd., Chichester, 2014. |
[8] |
C. Fang, W. Huang, Y. Yi and P. Zhang,
Dimensions of stable sets and scrambled sets in positive finite entropy systems, Ergodic Theory Dynam. Systems, 32 (2012), 599-628.
doi: 10.1017/S0143385710000982. |
[9] |
F. Garcia-Ramos and L. Jin,
Mean proximality and mean Li-Yorke chaos, Proc. Amer. Math. Soc., 145 (2017), 2959-2969.
doi: 10.1090/proc/13440. |
[10] |
F. Hofbauer,
$\beta$-Shifts have unique maximal measure, Monatsh. Math., 85 (1978), 189-198.
doi: 10.1007/BF01534862. |
[11] |
W. Huang, J. Li and X. Ye,
Stable sets and mean Li-Yorke chaos in positive entropy systems, J. Funct. Anal., 266 (2014), 3377-3394.
doi: 10.1016/j.jfa.2014.01.005. |
[12] |
T. Y. Li and James A. Yorke,
Period three implies chaos, Amer. Math. Monthly, 82 (1975), 985-992.
doi: 10.1080/00029890.1975.11994008. |
[13] |
K.-S. Lau and L. Shu,
The spectrum of Poincaré recurrence, Ergodic Theory Dynam. Systems, 28 (2008), 1917-1943.
doi: 10.1017/S0143385707001095. |
[14] |
B. Li and J. Wu,
Beta-expansion and continued fraction expansion, J. Math. Anal. Appl., 339 (2008), 1322-1331.
doi: 10.1016/j.jmaa.2007.07.070. |
[15] |
B. Li and Y.-C. Chen,
Chaotic and topological properties of $ \beta $-transformations, J. Math. Anal. Appl., 383 (2011), 585-596.
doi: 10.1016/j.jmaa.2011.05.049. |
[16] |
W. Liu and B. Li,
Chaotic and topological properties of continued fractions, J. Number Theory, 174 (2017), 369-383.
doi: 10.1016/j.jnt.2016.10.019. |
[17] |
J. Li and Y. Qiao,
Mean Li-Yorke chaos along some good sequences, Monatsh. Math., 186 (2018), 153-173.
doi: 10.1007/s00605-017-1086-2. |
[18] |
W.-B. Liu, C. Huang, M.-H. Li and S. Wang, A construction of the scrambled set with full Hausdorff dimension for beta-transformations, Fractals, 26 (2018), 1850005, 10pp.
doi: 10.1142/S0218348X18500056. |
[19] |
B. H. P. de M. e Maia, An Equivalent System for Studying Periodic Points of the Beta-Transformation for a Pisot or a Salem Number, Thesis (Ph.D.)-Universidade Autonoma de Lisboa (Portugal). 2008. |
[20] |
W. Parry,
On the $ \beta $-expansions of real numbers, Acta Math. Acad. Sci. Hungar., 11 (1960), 401-416.
doi: 10.1007/BF02020954. |
[21] |
A. Rényi,
Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar., 8 (1957), 477-493.
doi: 10.1007/BF02020331. |
[22] |
S. Ito and Y. Takahashi,
Markov subshifts and realization of $ \beta $-expansions, J. Math. Soc. Japan, 26 (1974), 33-55.
doi: 10.2969/jmsj/02610033. |
[23] |
B. Schweizer and J. Smítal,
Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc., 344 (1994), 737-754.
doi: 10.1090/S0002-9947-1994-1227094-X. |
[24] |
Y. Wang, E. Chen and X. Zhou,
Mean Li-Yorke chaos for random dynamical systems, J. Differential Equations, 267 (2019), 2239-2260.
doi: 10.1016/j.jde.2019.03.012. |
[25] |
J. C. Xiong,
Hausdorff dimension of a chaotic set of shift of a symbolic space, Sci. China Ser. A, 38 (1995), 696-708.
|
[1] |
Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317 |
[2] |
Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365 |
[3] |
Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328 |
[4] |
Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278 |
[5] |
Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129 |
[6] |
Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246 |
[7] |
Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293 |
[8] |
Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228 |
[9] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020378 |
[10] |
Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265 |
[11] |
Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067 |
[12] |
Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020123 |
[13] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[14] |
Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363 |
[15] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020447 |
[16] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020445 |
[17] |
Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020442 |
[18] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
[19] |
Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306 |
[20] |
Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096 |
2019 Impact Factor: 1.338
Tools
Article outline
[Back to Top]