-
Previous Article
On the Bidomain equations driven by stochastic forces
- DCDS Home
- This Issue
-
Next Article
Weak solutions to the continuous coagulation model with collisional breakage
Multitransition solutions for a generalized Frenkel-Kontorova model
1. | School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China |
2. | Department of Mathematics, Nanjing University, Nanjing 210093, China |
We study a generalized Frenkel-Kontorova model. Using minimal and Birkhoff solutions as building blocks, we construct a lot of homoclinic solutions and heteroclinic solutions for this generalized Frenkel-Kontorova model under gap conditions. These new solutions are not minimal and Birkhoff any more. We use constrained minimization method to prove our results.
References:
[1] |
V. Bangert,
The existence of gaps in minimal foliations, Aequationes Mathematicae, 34 (1987), 153-166.
doi: 10.1007/BF01830667. |
[2] |
V. Bangert,
A uniqueness theorem for Zn-periodic variational problems, Comment. Math. Helv., 62 (1987), 511-531.
|
[3] |
V. Bangert,
On minimal laminations of the torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 95-138.
doi: 10.1016/S0294-1449(16)30328-6. |
[4] |
U. Bessi,
Slope-changing solutions of elliptic problems on $\bf R^n$, Nonlinear Anal., 68 (2008), 3923-3947.
doi: 10.1016/j.na.2007.04.031. |
[5] |
L. A. Caffarelli and R. de la Llave,
Planelike minimizers in periodic media, Comm. Pure Appl. Math., 54 (2001), 1403-1441.
doi: 10.1002/cpa.10008. |
[6] |
L. A. Caffarelli and R. de la Llave,
Interfaces of ground states in Ising models with periodic coefficients, J. Stat. Phys., 118 (2005), 687-719.
doi: 10.1007/s10955-004-8825-1. |
[7] |
M. Cozzi, S. Dipierro and E. Valdinoci,
Planelike interfaces in long-range Ising models and connections with nonlocal minimal surfaces, J. Stat. Phys., 167 (2017), 1401-1451.
doi: 10.1007/s10955-017-1783-1. |
[8] |
R. de La Llave and E. Valdinoci,
Critical points inside the gaps of ground state laminations for some models in statistical mechanics, J. Stat. Phys., 129 (2007), 81-119.
doi: 10.1007/s10955-007-9345-6. |
[9] |
R. de la Llave and E. Valdinoci,
A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1309-1344.
doi: 10.1016/j.anihpc.2008.11.002. |
[10] |
R. de La Llave and E. Valdinoci,
Ground states and critical points for Aubry-Mather theory in statistical mechanics, J. Nonlinear Sci., 20 (2010), 153-218.
doi: 10.1007/s00332-009-9055-0. |
[11] |
W.-L. Li and X. Cui,
Heteroclinic solutions for a Frenkel-Kontorova model by minimization methods of Rabinowitz and Stredulinsky, J. Differential Equations, 268 (2020), 1106-1155.
doi: 10.1016/j.jde.2019.08.048. |
[12] |
J. N. Mather,
Variational construction of connecting orbits, Ann. Inst. Fourier (Grenoble), 43 (1993), 1349-1386.
doi: 10.5802/aif.1377. |
[13] |
X.-Q. Miao, W.-X. Qin and Y.-N. Wang,
Secondary invariants of Birkhoff minimizers and heteroclinic orbits, J. Differential Equations, 260 (2016), 1522-1557.
doi: 10.1016/j.jde.2015.09.039. |
[14] |
J. Moser,
Minimal solutions of variational problems on a torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 229-272.
doi: 10.1016/S0294-1449(16)30387-0. |
[15] |
B. Mramor and B. Rink,
Ghost circles in lattice Aubry-Mather theory, J. Differential Equations, 252 (2012), 3163-3208.
doi: 10.1016/j.jde.2011.11.023. |
[16] |
P. H. Rabinowitz,
Single and multitransition solutions for a family of semilinear elliptic PDE's, Milan J. Math., 79 (2011), 113-127.
doi: 10.1007/s00032-011-0139-6. |
[17] |
P. H. Rabinowitz and Ed Stredulinsky,
Mixed states for an Allen-Cahn type equation, Comm. Pure Appl. Math., 56 (2003), 1078-1134.
doi: 10.1002/cpa.10087. |
[18] |
P. H. Rabinowitz and Ed Stredulinsky,
Mixed states for an Allen-Cahn type equation, II, Calc. Var. Partial Differential Equation, 21 (2004), 157-207.
doi: 10.1007/s00526-003-0251-8. |
[19] |
P. H. Rabinowitz and E. Stredulinsky,
On some results of Moser and of Bangert, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 673-688.
doi: 10.1016/j.anihpc.2003.10.002. |
[20] |
P. H. Rabinowitz and Ed Stredulinsky,
On some results of Moser and of Bangert, II, Adv. Nonlinear Stud., 4 (2004), 377-396.
doi: 10.1515/ans-2004-0402. |
[21] |
P. H. Rabinowitz and Ed Stredulinsky,
Infinite transition solutions for a class of Allen-Cahn model equations, J. Fixed Point Theory Appl., 4 (2008), 247-262.
doi: 10.1007/s11784-008-0091-4. |
[22] |
P. H. Rabinowitz and Ed Stredulinsky,
On a class of infinite transition solutions for an Allen-Cahn model equation, Discrete Contin. Dyn. Syst., 21 (2008), 319-332.
doi: 10.3934/dcds.2008.21.319. |
[23] |
P. H. Rabinowitz and E. W. Stredulinsky, Extensions of Moser-Bangert Theory: Locally Minimal Solutions, Progress in Nonlinear Differential Equations and their Applications, 81, Birkhäuser/Springer, New York, 2011.
doi: 10.1007/978-0-8176-8117-3. |
[24] |
M. Torres,
Plane-like minimal surfaces in periodic media with exclusions, SIAM J. Math. Anal., 36 (2004), 523-551.
doi: 10.1137/S0036141001399970. |
[25] |
E. Valdinoci,
Plane-like minimizers in periodic media: jet flows and Ginzburg-Landau-type functionals, J. Reine Angew. Math., 574 (2004), 147-185.
doi: 10.1515/crll.2004.068. |
show all references
References:
[1] |
V. Bangert,
The existence of gaps in minimal foliations, Aequationes Mathematicae, 34 (1987), 153-166.
doi: 10.1007/BF01830667. |
[2] |
V. Bangert,
A uniqueness theorem for Zn-periodic variational problems, Comment. Math. Helv., 62 (1987), 511-531.
|
[3] |
V. Bangert,
On minimal laminations of the torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 95-138.
doi: 10.1016/S0294-1449(16)30328-6. |
[4] |
U. Bessi,
Slope-changing solutions of elliptic problems on $\bf R^n$, Nonlinear Anal., 68 (2008), 3923-3947.
doi: 10.1016/j.na.2007.04.031. |
[5] |
L. A. Caffarelli and R. de la Llave,
Planelike minimizers in periodic media, Comm. Pure Appl. Math., 54 (2001), 1403-1441.
doi: 10.1002/cpa.10008. |
[6] |
L. A. Caffarelli and R. de la Llave,
Interfaces of ground states in Ising models with periodic coefficients, J. Stat. Phys., 118 (2005), 687-719.
doi: 10.1007/s10955-004-8825-1. |
[7] |
M. Cozzi, S. Dipierro and E. Valdinoci,
Planelike interfaces in long-range Ising models and connections with nonlocal minimal surfaces, J. Stat. Phys., 167 (2017), 1401-1451.
doi: 10.1007/s10955-017-1783-1. |
[8] |
R. de La Llave and E. Valdinoci,
Critical points inside the gaps of ground state laminations for some models in statistical mechanics, J. Stat. Phys., 129 (2007), 81-119.
doi: 10.1007/s10955-007-9345-6. |
[9] |
R. de la Llave and E. Valdinoci,
A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1309-1344.
doi: 10.1016/j.anihpc.2008.11.002. |
[10] |
R. de La Llave and E. Valdinoci,
Ground states and critical points for Aubry-Mather theory in statistical mechanics, J. Nonlinear Sci., 20 (2010), 153-218.
doi: 10.1007/s00332-009-9055-0. |
[11] |
W.-L. Li and X. Cui,
Heteroclinic solutions for a Frenkel-Kontorova model by minimization methods of Rabinowitz and Stredulinsky, J. Differential Equations, 268 (2020), 1106-1155.
doi: 10.1016/j.jde.2019.08.048. |
[12] |
J. N. Mather,
Variational construction of connecting orbits, Ann. Inst. Fourier (Grenoble), 43 (1993), 1349-1386.
doi: 10.5802/aif.1377. |
[13] |
X.-Q. Miao, W.-X. Qin and Y.-N. Wang,
Secondary invariants of Birkhoff minimizers and heteroclinic orbits, J. Differential Equations, 260 (2016), 1522-1557.
doi: 10.1016/j.jde.2015.09.039. |
[14] |
J. Moser,
Minimal solutions of variational problems on a torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 229-272.
doi: 10.1016/S0294-1449(16)30387-0. |
[15] |
B. Mramor and B. Rink,
Ghost circles in lattice Aubry-Mather theory, J. Differential Equations, 252 (2012), 3163-3208.
doi: 10.1016/j.jde.2011.11.023. |
[16] |
P. H. Rabinowitz,
Single and multitransition solutions for a family of semilinear elliptic PDE's, Milan J. Math., 79 (2011), 113-127.
doi: 10.1007/s00032-011-0139-6. |
[17] |
P. H. Rabinowitz and Ed Stredulinsky,
Mixed states for an Allen-Cahn type equation, Comm. Pure Appl. Math., 56 (2003), 1078-1134.
doi: 10.1002/cpa.10087. |
[18] |
P. H. Rabinowitz and Ed Stredulinsky,
Mixed states for an Allen-Cahn type equation, II, Calc. Var. Partial Differential Equation, 21 (2004), 157-207.
doi: 10.1007/s00526-003-0251-8. |
[19] |
P. H. Rabinowitz and E. Stredulinsky,
On some results of Moser and of Bangert, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 673-688.
doi: 10.1016/j.anihpc.2003.10.002. |
[20] |
P. H. Rabinowitz and Ed Stredulinsky,
On some results of Moser and of Bangert, II, Adv. Nonlinear Stud., 4 (2004), 377-396.
doi: 10.1515/ans-2004-0402. |
[21] |
P. H. Rabinowitz and Ed Stredulinsky,
Infinite transition solutions for a class of Allen-Cahn model equations, J. Fixed Point Theory Appl., 4 (2008), 247-262.
doi: 10.1007/s11784-008-0091-4. |
[22] |
P. H. Rabinowitz and Ed Stredulinsky,
On a class of infinite transition solutions for an Allen-Cahn model equation, Discrete Contin. Dyn. Syst., 21 (2008), 319-332.
doi: 10.3934/dcds.2008.21.319. |
[23] |
P. H. Rabinowitz and E. W. Stredulinsky, Extensions of Moser-Bangert Theory: Locally Minimal Solutions, Progress in Nonlinear Differential Equations and their Applications, 81, Birkhäuser/Springer, New York, 2011.
doi: 10.1007/978-0-8176-8117-3. |
[24] |
M. Torres,
Plane-like minimal surfaces in periodic media with exclusions, SIAM J. Math. Anal., 36 (2004), 523-551.
doi: 10.1137/S0036141001399970. |
[25] |
E. Valdinoci,
Plane-like minimizers in periodic media: jet flows and Ginzburg-Landau-type functionals, J. Reine Angew. Math., 574 (2004), 147-185.
doi: 10.1515/crll.2004.068. |
[1] |
Jianxing Du, Xifeng Su. On the existence of solutions for the Frenkel-Kontorova models on quasi-crystals. Electronic Research Archive, 2021, 29 (6) : 4177-4198. doi: 10.3934/era.2021078 |
[2] |
Wen-Xin Qin. Modulation of uniform motion in diatomic Frenkel-Kontorova model. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3773-3788. doi: 10.3934/dcds.2014.34.3773 |
[3] |
Wen-Xin Qin. Rotating modes in the Frenkel-Kontorova model with periodic interaction potential. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1147-1158. doi: 10.3934/dcds.2010.27.1147 |
[4] |
Luchuan Ceng, Qamrul Hasan Ansari, Jen-Chih Yao. Extragradient-projection method for solving constrained convex minimization problems. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 341-359. doi: 10.3934/naco.2011.1.341 |
[5] |
David Yang Gao. Solutions and optimality criteria to box constrained nonconvex minimization problems. Journal of Industrial and Management Optimization, 2007, 3 (2) : 293-304. doi: 10.3934/jimo.2007.3.293 |
[6] |
Zhi-Feng Pang, Yu-Fei Yang. Semismooth Newton method for minimization of the LLT model. Inverse Problems and Imaging, 2009, 3 (4) : 677-691. doi: 10.3934/ipi.2009.3.677 |
[7] |
Philipp Hungerländer, Barbara Kaltenbacher, Franz Rendl. Regularization of inverse problems via box constrained minimization. Inverse Problems and Imaging, 2020, 14 (3) : 437-461. doi: 10.3934/ipi.2020021 |
[8] |
Riccardo Adami, Diego Noja, Nicola Visciglia. Constrained energy minimization and ground states for NLS with point defects. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1155-1188. doi: 10.3934/dcdsb.2013.18.1155 |
[9] |
Helin Guo, Huan-Song Zhou. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1023-1050. doi: 10.3934/dcds.2020308 |
[10] |
Yingying Li, Stanley Osher, Richard Tsai. Heat source identification based on $l_1$ constrained minimization. Inverse Problems and Imaging, 2014, 8 (1) : 199-221. doi: 10.3934/ipi.2014.8.199 |
[11] |
Adriana González, Laurent Jacques, Christophe De Vleeschouwer, Philippe Antoine. Compressive optical deflectometric tomography: A constrained total-variation minimization approach. Inverse Problems and Imaging, 2014, 8 (2) : 421-457. doi: 10.3934/ipi.2014.8.421 |
[12] |
Yuan Shen, Xin Liu. An alternating minimization method for matrix completion problems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1757-1772. doi: 10.3934/dcdss.2020103 |
[13] |
Zhengshan Dong, Jianli Chen, Wenxing Zhu. Homotopy method for matrix rank minimization based on the matrix hard thresholding method. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 211-224. doi: 10.3934/naco.2019015 |
[14] |
Min Liu, Zhongwei Tang. Multiplicity and concentration of solutions for Choquard equation via Nehari method and pseudo-index theory. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3365-3398. doi: 10.3934/dcds.2019139 |
[15] |
María Andrea Arias Serna, María Eugenia Puerta Yepes, César Edinson Escalante Coterio, Gerardo Arango Ospina. $ (Q,r) $ Model with $ CVaR_α $ of costs minimization. Journal of Industrial and Management Optimization, 2017, 13 (1) : 135-146. doi: 10.3934/jimo.2016008 |
[16] |
Yongjian Yang, Zhiyou Wu, Fusheng Bai. A filled function method for constrained nonlinear integer programming. Journal of Industrial and Management Optimization, 2008, 4 (2) : 353-362. doi: 10.3934/jimo.2008.4.353 |
[17] |
Zhongwen Chen, Songqiang Qiu, Yujie Jiao. A penalty-free method for equality constrained optimization. Journal of Industrial and Management Optimization, 2013, 9 (2) : 391-409. doi: 10.3934/jimo.2013.9.391 |
[18] |
Liejune Shiau, Roland Glowinski. Operator splitting method for friction constrained dynamical systems. Conference Publications, 2005, 2005 (Special) : 806-815. doi: 10.3934/proc.2005.2005.806 |
[19] |
Yu-Ning Yang, Su Zhang. On linear convergence of projected gradient method for a class of affine rank minimization problems. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1507-1519. doi: 10.3934/jimo.2016.12.1507 |
[20] |
Lei Wu, Zhe Sun. A new spectral method for $l_1$-regularized minimization. Inverse Problems and Imaging, 2015, 9 (1) : 257-272. doi: 10.3934/ipi.2015.9.257 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]