-
Previous Article
Gromov-Hausdorff distances for dynamical systems
- DCDS Home
- This Issue
-
Next Article
Multitransition solutions for a generalized Frenkel-Kontorova model
On the Bidomain equations driven by stochastic forces
1. | Technische Universität Darmstadt, Fachbereich Mathematik, Schlossgarten-Strasse 7, D-64289 Darmstadt, Germany |
2. | Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, 1015 Floyd ave., Richmond, VA, 23227, USA |
3. | Department of Mathematics, Taras Shevchenko National University of Kyiv, 4E Glushkov ave., Kyiv, 03127, Ukraine |
The bidomain equations driven by stochastic forces and subject to nonlinearities of FitzHugh-Nagumo or Allen-Cahn type are considered for the first time. It is shown that this set of equations admits a global weak solution as well as a stationary solution, which generates a uniquely determined invariant measure.
References:
[1] |
R. R. Aliev and A. V. Panfilov,
A simple two-variable model for cardiac excitation, Fractals, 7 (1996), 293-301.
doi: 10.1016/0960-0779(95)00089-5. |
[2] |
Y. Bourgault, Y. Coudière and C. Pierre,
Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Anal. Real World Appl., 10 (2009), 458-482.
doi: 10.1016/j.nonrwa.2007.10.007. |
[3] |
P.-L. Chow, Stochastic Partial Differential Equations, Chapman & Hall/CRC, Boca Raton, FL, 2007. |
[4] |
P. Colli-Franzone, L. Guerri and S. Tentoni,
Mathematical modeling of the excitation process in myocardium tissues: Influence of fiber rotation on wavefront progagation and potential field, Math. Biosci., 110 (1990), 155-235.
|
[5] |
P. Colli Franzone, L. F. Pavarino and S. Scacchi, Mathematical Cardiac Electrophysiology, Springer, 2014.
doi: 10.1007/978-3-319-04801-7. |
[6] |
P. Colli Franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level, Evolution Equations, Semigroups and Functional Analysis. Progr. Nonlinear Differential Equations Appl., Birkhäuser, Basel, 50 (2002), 49–78. |
[7] |
G. Da Prato, S. Kwapień and J. Zabczyk,
Regularity of solutions of linear stochastic equations in Hilbert spaces, Stochastics, 23 (1987), 1-23.
doi: 10.1080/17442508708833480. |
[8] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Univerity Press, 1992.
doi: 10.1017/CBO9780511666223.![]() ![]() ![]() |
[9] |
G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge Univerity Press, 1996.
doi: 10.1017/CBO9780511662829.![]() ![]() |
[10] |
Y. Giga and N. Kajiwara,
On a resolvent estimate for bidomain operators and its applications, J. Math. Anal. Appl., 459 (2018), 528-555.
doi: 10.1016/j.jmaa.2017.10.023. |
[11] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 1981. |
[12] |
M. Hieber and J. Prüss, $L_q$-Theory for the bidomain operator, Submitted. |
[13] |
M. Hieber and J. Prüss, On the bidomain problem with FitzHugh-Nagumo transport, Arch. Math., 111 (2018), 313–327.
doi: 10.1007/s00013-018-1188-7. |
[14] |
J. Keener and J. Sneyd, Mathematical Physiology, Interdisciplinary Applied Mathematics Springer, New York, 1998. |
[15] |
O. Misiats, O. Stanzhytskyi and N. K. Yip, Existence and uniqueness of invariant measures for stochastic reaction-diffusion equations in unbounded domains, Journal of Theoretical Probability, 29 (2016), 996–1026.
doi: 10.1007/s10959-015-0606-z. |
[16] |
O. Misiats, O. Stanzhytskyi and N. K. Yip, Asymptotic behavior and homogenization of invariant measures, Stoch. Dyn., 19 (2019), 1950015, 27 pp.
doi: 10.1142/S0219493719500151. |
[17] |
O. Misiats, O. Stanzhytskyi and N. K. Yip, Invariant measures for reaction-diffusion equations with weakly dissipative nonlinearities, Stochastics: An International Journal of Probability and Stochastic Processes, 2019.
doi: 10.1080/17442508.2019.1691212. |
[18] |
Y. Mori and H. Matano,
Stability of front solutions of the bidomain equation, Comm. Pure Appl. Math., 69 (2016), 2364-2426.
doi: 10.1002/cpa.21634. |
[19] |
C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics, 2007. |
[20] |
J. Rogers and A. McCulloch, A collacation Galerkin finite element model of cardiac action potential propagation, IEEE Trans. Biomed. Eng., 41 (1994), 743–757. |
[21] | |
[22] |
M. Veneroni,
Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field, Nonlinear Anal. Real World Appl, 10 (2009), 849-868.
doi: 10.1016/j.nonrwa.2007.11.008. |
show all references
References:
[1] |
R. R. Aliev and A. V. Panfilov,
A simple two-variable model for cardiac excitation, Fractals, 7 (1996), 293-301.
doi: 10.1016/0960-0779(95)00089-5. |
[2] |
Y. Bourgault, Y. Coudière and C. Pierre,
Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Anal. Real World Appl., 10 (2009), 458-482.
doi: 10.1016/j.nonrwa.2007.10.007. |
[3] |
P.-L. Chow, Stochastic Partial Differential Equations, Chapman & Hall/CRC, Boca Raton, FL, 2007. |
[4] |
P. Colli-Franzone, L. Guerri and S. Tentoni,
Mathematical modeling of the excitation process in myocardium tissues: Influence of fiber rotation on wavefront progagation and potential field, Math. Biosci., 110 (1990), 155-235.
|
[5] |
P. Colli Franzone, L. F. Pavarino and S. Scacchi, Mathematical Cardiac Electrophysiology, Springer, 2014.
doi: 10.1007/978-3-319-04801-7. |
[6] |
P. Colli Franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level, Evolution Equations, Semigroups and Functional Analysis. Progr. Nonlinear Differential Equations Appl., Birkhäuser, Basel, 50 (2002), 49–78. |
[7] |
G. Da Prato, S. Kwapień and J. Zabczyk,
Regularity of solutions of linear stochastic equations in Hilbert spaces, Stochastics, 23 (1987), 1-23.
doi: 10.1080/17442508708833480. |
[8] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Univerity Press, 1992.
doi: 10.1017/CBO9780511666223.![]() ![]() ![]() |
[9] |
G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge Univerity Press, 1996.
doi: 10.1017/CBO9780511662829.![]() ![]() |
[10] |
Y. Giga and N. Kajiwara,
On a resolvent estimate for bidomain operators and its applications, J. Math. Anal. Appl., 459 (2018), 528-555.
doi: 10.1016/j.jmaa.2017.10.023. |
[11] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 1981. |
[12] |
M. Hieber and J. Prüss, $L_q$-Theory for the bidomain operator, Submitted. |
[13] |
M. Hieber and J. Prüss, On the bidomain problem with FitzHugh-Nagumo transport, Arch. Math., 111 (2018), 313–327.
doi: 10.1007/s00013-018-1188-7. |
[14] |
J. Keener and J. Sneyd, Mathematical Physiology, Interdisciplinary Applied Mathematics Springer, New York, 1998. |
[15] |
O. Misiats, O. Stanzhytskyi and N. K. Yip, Existence and uniqueness of invariant measures for stochastic reaction-diffusion equations in unbounded domains, Journal of Theoretical Probability, 29 (2016), 996–1026.
doi: 10.1007/s10959-015-0606-z. |
[16] |
O. Misiats, O. Stanzhytskyi and N. K. Yip, Asymptotic behavior and homogenization of invariant measures, Stoch. Dyn., 19 (2019), 1950015, 27 pp.
doi: 10.1142/S0219493719500151. |
[17] |
O. Misiats, O. Stanzhytskyi and N. K. Yip, Invariant measures for reaction-diffusion equations with weakly dissipative nonlinearities, Stochastics: An International Journal of Probability and Stochastic Processes, 2019.
doi: 10.1080/17442508.2019.1691212. |
[18] |
Y. Mori and H. Matano,
Stability of front solutions of the bidomain equation, Comm. Pure Appl. Math., 69 (2016), 2364-2426.
doi: 10.1002/cpa.21634. |
[19] |
C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics, 2007. |
[20] |
J. Rogers and A. McCulloch, A collacation Galerkin finite element model of cardiac action potential propagation, IEEE Trans. Biomed. Eng., 41 (1994), 743–757. |
[21] | |
[22] |
M. Veneroni,
Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field, Nonlinear Anal. Real World Appl, 10 (2009), 849-868.
doi: 10.1016/j.nonrwa.2007.11.008. |
[1] |
Jonathan C. Mattingly, Etienne Pardoux. Invariant measure selection by noise. An example. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4223-4257. doi: 10.3934/dcds.2014.34.4223 |
[2] |
Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140 |
[3] |
Angelo Favini, Georgy A. Sviridyuk, Alyona A. Zamyshlyaeva. One Class of Sobolev Type Equations of Higher Order with Additive "White Noise". Communications on Pure and Applied Analysis, 2016, 15 (1) : 185-196. doi: 10.3934/cpaa.2016.15.185 |
[4] |
Guanggan Chen, Qin Li, Yunyun Wei. Approximate dynamics of a class of stochastic wave equations with white noise. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 73-101. doi: 10.3934/dcdsb.2021033 |
[5] |
Xinfu Chen, Carey Caginalp, Jianghao Hao, Yajing Zhang. Effects of white noise in multistable dynamics. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1805-1825. doi: 10.3934/dcdsb.2013.18.1805 |
[6] |
Leonid Shaikhet. Stability of delay differential equations with fading stochastic perturbations of the type of white noise and poisson's jumps. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3651-3657. doi: 10.3934/dcdsb.2020077 |
[7] |
Yanzhao Cao, Li Yin. Spectral Galerkin method for stochastic wave equations driven by space-time white noise. Communications on Pure and Applied Analysis, 2007, 6 (3) : 607-617. doi: 10.3934/cpaa.2007.6.607 |
[8] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[9] |
Ying Hu, Shanjian Tang. Nonlinear backward stochastic evolutionary equations driven by a space-time white noise. Mathematical Control and Related Fields, 2018, 8 (3&4) : 739-751. doi: 10.3934/mcrf.2018032 |
[10] |
Tianlong Shen, Jianhua Huang, Caibin Zeng. Time fractional and space nonlocal stochastic boussinesq equations driven by gaussian white noise. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1523-1533. doi: 10.3934/dcdsb.2018056 |
[11] |
Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2877-2891. doi: 10.3934/dcdss.2020456 |
[12] |
Tran Ngoc Thach, Devendra Kumar, Nguyen Hoang Luc, Nguyen Huy Tuan. Existence and regularity results for stochastic fractional pseudo-parabolic equations driven by white noise. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 481-499. doi: 10.3934/dcdss.2021118 |
[13] |
Xiang Lv. Existence of unstable stationary solutions for nonlinear stochastic differential equations with additive white noise. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2313-2323. doi: 10.3934/dcdsb.2021133 |
[14] |
Jun Shen, Kening Lu, Bixiang Wang. Invariant manifolds and foliations for random differential equations driven by colored noise. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6201-6246. doi: 10.3934/dcds.2020276 |
[15] |
Andriy Stanzhytsky, Oleksandr Misiats, Oleksandr Stanzhytskyi. Invariant measure for neutral stochastic functional differential equations with non-Lipschitz coefficients. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022005 |
[16] |
Yan Wang, Lei Wang, Yanxiang Zhao, Aimin Song, Yanping Ma. A stochastic model for microbial fermentation process under Gaussian white noise environment. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 381-392. doi: 10.3934/naco.2015.5.381 |
[17] |
Boris P. Belinskiy, Peter Caithamer. Stochastic stability of some mechanical systems with a multiplicative white noise. Conference Publications, 2003, 2003 (Special) : 91-99. doi: 10.3934/proc.2003.2003.91 |
[18] |
Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1615-1626. doi: 10.3934/dcdsb.2020175 |
[19] |
Yuguo Lin, Daqing Jiang. Long-time behaviour of a perturbed SIR model by white noise. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1873-1887. doi: 10.3934/dcdsb.2013.18.1873 |
[20] |
Luis J. Roman, Marcus Sarkis. Stochastic Galerkin method for elliptic spdes: A white noise approach. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 941-955. doi: 10.3934/dcdsb.2006.6.941 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]