-
Previous Article
Singular solutions of a Lane-Emden system
- DCDS Home
- This Issue
-
Next Article
Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity
Maximal factors of order $ d $ of dynamical cubespaces
Wu Wen-Tsun Key Laboratory of Mathematics, USTC, Chinese Academy of Sciences and School of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China |
For a dynamical system $ (X, T) $, $ l\in\mathbb{N} $ and $ x\in X $, let $ \mathbf{Q}^{[l]}(X) $ and $ \overline{\mathcal{F}^{[l]}}(x^{[l]}) $ be the orbit closures of the diagonal point $ x^{[l]} $ under the parallelepipeds group $ \mathcal{G}^{[l]} $ and the face group $ \mathcal{F}^{[l]} $ actions respectively. In this paper, it is shown that for a minimal system $ (X, T) $ and every $ l\in \mathbb{N}, x\in X $, the maximal factors of order $ d $ of $ (\mathbf{Q}^{[l]}(X), \mathcal{G}^{[l]}) $ and $ (\overline{\mathcal{F}^{[l]}}(x^{[l]}), \mathcal{F}^{[l]}) $ are $ (\mathbf{Q}^{[l]}(X_d), \mathcal{G}^{[l]}) $ and $ (\overline{\mathcal{F}^{[l]}}(\pi(x)^{[l]}), \mathcal{F}^{[l]}) $ respectively, where $ \pi:X\to X/\mathbf{RP}^{[d]}(X) = X_d, d\in \mathbb{N}\cup\{\infty\} $ is the factor map and $ \mathbf{RP}^{[d]}(X) $ is the regionally proximal relation of order $ d $.
References:
[1] |
J. Auslander, Minimal Flows and their Extensions, North-Holland Mathematics Studies, 153, North-Holland Publishing Co., Amsterdam, 1988. |
[2] |
H. Becker and A. S. Kechris, The Descriptive Set Theory of Polish Groups Actions, London
Math. Soc. Lecture Notes Ser., 232, Cambridge Univ. Press, Cambridge, 1996.
doi: 10.1017/CBO9780511735264. |
[3] |
P. Dong, S. Donoso, A. Maass, S. Shao and X. Ye,
Infinite-step nilsystems, independence and complexity, Ergod. Th. and Dynam. Sys., 33 (2013), 118-143.
doi: 10.1017/S0143385711000861. |
[4] | |
[5] |
B. Host and B. Kra, Nilpotent Structures in Ergodic Theory, Mathematical surveys and monographs 236, Providence, Rhode Island: American Mathematical Society, 2018. |
[6] |
B. Host, B. Kra and A. Maass,
Nilsequences and a structure theorem for topological dynamical systems, Adv. in Math., 224 (2010), 103-129.
doi: 10.1016/j.aim.2009.11.009. |
[7] |
J. Qiu and J. Zhao, Top-nilpotent enveloping semigroups and pro-nilsystems, arXiv: 1911.05435. |
[8] |
S. Shao and X. Ye,
Regionally proximal relation of order $d$ is an equivalence one for minimal systems and a combinatorial consequence, Adv. in Math., 231 (2012), 1786-1817.
doi: 10.1016/j.aim.2012.07.012. |
[9] |
J. de Vries, Elements of Topological Dynamics, Kluwer Academic Publishers Group, Dordrecht, 1993.
doi: 10.1007/978-94-015-8171-4. |
show all references
References:
[1] |
J. Auslander, Minimal Flows and their Extensions, North-Holland Mathematics Studies, 153, North-Holland Publishing Co., Amsterdam, 1988. |
[2] |
H. Becker and A. S. Kechris, The Descriptive Set Theory of Polish Groups Actions, London
Math. Soc. Lecture Notes Ser., 232, Cambridge Univ. Press, Cambridge, 1996.
doi: 10.1017/CBO9780511735264. |
[3] |
P. Dong, S. Donoso, A. Maass, S. Shao and X. Ye,
Infinite-step nilsystems, independence and complexity, Ergod. Th. and Dynam. Sys., 33 (2013), 118-143.
doi: 10.1017/S0143385711000861. |
[4] | |
[5] |
B. Host and B. Kra, Nilpotent Structures in Ergodic Theory, Mathematical surveys and monographs 236, Providence, Rhode Island: American Mathematical Society, 2018. |
[6] |
B. Host, B. Kra and A. Maass,
Nilsequences and a structure theorem for topological dynamical systems, Adv. in Math., 224 (2010), 103-129.
doi: 10.1016/j.aim.2009.11.009. |
[7] |
J. Qiu and J. Zhao, Top-nilpotent enveloping semigroups and pro-nilsystems, arXiv: 1911.05435. |
[8] |
S. Shao and X. Ye,
Regionally proximal relation of order $d$ is an equivalence one for minimal systems and a combinatorial consequence, Adv. in Math., 231 (2012), 1786-1817.
doi: 10.1016/j.aim.2012.07.012. |
[9] |
J. de Vries, Elements of Topological Dynamics, Kluwer Academic Publishers Group, Dordrecht, 1993.
doi: 10.1007/978-94-015-8171-4. |
[1] |
Sebastián Donoso. Enveloping semigroups of systems of order d. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2729-2740. doi: 10.3934/dcds.2014.34.2729 |
[2] |
Ahmed Y. Abdallah. Exponential attractors for second order lattice dynamical systems. Communications on Pure and Applied Analysis, 2009, 8 (3) : 803-813. doi: 10.3934/cpaa.2009.8.803 |
[3] |
Xiangjin Xu. Multiple solutions of super-quadratic second order dynamical systems. Conference Publications, 2003, 2003 (Special) : 926-934. doi: 10.3934/proc.2003.2003.926 |
[4] |
Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129 |
[5] |
Xiaojun Chang, Yong Li. Rotating periodic solutions of second order dissipative dynamical systems. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 643-652. doi: 10.3934/dcds.2016.36.643 |
[6] |
Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281 |
[7] |
Thierry Horsin, Mohamed Ali Jendoubi. Asymptotics for some discretizations of dynamical systems, application to second order systems with non-local nonlinearities. Communications on Pure and Applied Analysis, 2022, 21 (3) : 999-1025. doi: 10.3934/cpaa.2022007 |
[8] |
H. W. Broer, Renato Vitolo. Dynamical systems modeling of low-frequency variability in low-order atmospheric models. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 401-419. doi: 10.3934/dcdsb.2008.10.401 |
[9] |
Martin Redmann, Melina A. Freitag. Balanced model order reduction for linear random dynamical systems driven by Lévy noise. Journal of Computational Dynamics, 2018, 5 (1&2) : 33-59. doi: 10.3934/jcd.2018002 |
[10] |
Adolfo Damiano Cafaro, Simone Fiori. Optimization of a control law to synchronize first-order dynamical systems on Riemannian manifolds by a transverse component. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021213 |
[11] |
El Houcein El Abdalaoui, Sylvain Bonnot, Ali Messaoudi, Olivier Sester. On the Fibonacci complex dynamical systems. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2449-2471. doi: 10.3934/dcds.2016.36.2449 |
[12] |
Lianfa He, Hongwen Zheng, Yujun Zhu. Shadowing in random dynamical systems. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 355-362. doi: 10.3934/dcds.2005.12.355 |
[13] |
Mauricio Achigar. Extensions of expansive dynamical systems. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3093-3108. doi: 10.3934/dcds.2020399 |
[14] |
Fritz Colonius, Marco Spadini. Fundamental semigroups for dynamical systems. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 447-463. doi: 10.3934/dcds.2006.14.447 |
[15] |
John Erik Fornæss. Sustainable dynamical systems. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1361-1386. doi: 10.3934/dcds.2003.9.1361 |
[16] |
Vieri Benci, C. Bonanno, Stefano Galatolo, G. Menconi, M. Virgilio. Dynamical systems and computable information. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 935-960. doi: 10.3934/dcdsb.2004.4.935 |
[17] |
Mădălina Roxana Buneci. Morphisms of discrete dynamical systems. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 91-107. doi: 10.3934/dcds.2011.29.91 |
[18] |
Josiney A. Souza, Tiago A. Pacifico, Hélio V. M. Tozatti. A note on parallelizable dynamical systems. Electronic Research Announcements, 2017, 24: 64-67. doi: 10.3934/era.2017.24.007 |
[19] |
Philippe Marie, Jérôme Rousseau. Recurrence for random dynamical systems. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 1-16. doi: 10.3934/dcds.2011.30.1 |
[20] |
Tobias Wichtrey. Harmonic limits of dynamical systems. Conference Publications, 2011, 2011 (Special) : 1432-1439. doi: 10.3934/proc.2011.2011.1432 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]