\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Maximal factors of order $ d $ of dynamical cubespaces

Abstract Full Text(HTML) Related Papers Cited by
  • For a dynamical system $ (X, T) $, $ l\in\mathbb{N} $ and $ x\in X $, let $ \mathbf{Q}^{[l]}(X) $ and $ \overline{\mathcal{F}^{[l]}}(x^{[l]}) $ be the orbit closures of the diagonal point $ x^{[l]} $ under the parallelepipeds group $ \mathcal{G}^{[l]} $ and the face group $ \mathcal{F}^{[l]} $ actions respectively. In this paper, it is shown that for a minimal system $ (X, T) $ and every $ l\in \mathbb{N}, x\in X $, the maximal factors of order $ d $ of $ (\mathbf{Q}^{[l]}(X), \mathcal{G}^{[l]}) $ and $ (\overline{\mathcal{F}^{[l]}}(x^{[l]}), \mathcal{F}^{[l]}) $ are $ (\mathbf{Q}^{[l]}(X_d), \mathcal{G}^{[l]}) $ and $ (\overline{\mathcal{F}^{[l]}}(\pi(x)^{[l]}), \mathcal{F}^{[l]}) $ respectively, where $ \pi:X\to X/\mathbf{RP}^{[d]}(X) = X_d, d\in \mathbb{N}\cup\{\infty\} $ is the factor map and $ \mathbf{RP}^{[d]}(X) $ is the regionally proximal relation of order $ d $.

    Mathematics Subject Classification: 37B05, 37A99.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] J. Auslander, Minimal Flows and their Extensions, North-Holland Mathematics Studies, 153, North-Holland Publishing Co., Amsterdam, 1988.
    [2] H. Becker and A. S. Kechris, The Descriptive Set Theory of Polish Groups Actions, London Math. Soc. Lecture Notes Ser., 232, Cambridge Univ. Press, Cambridge, 1996. doi: 10.1017/CBO9780511735264.
    [3] P. DongS. DonosoA. MaassS. Shao and X. Ye, Infinite-step nilsystems, independence and complexity, Ergod. Th. and Dynam. Sys., 33 (2013), 118-143.  doi: 10.1017/S0143385711000861.
    [4] B. Host and B. Kra, Personal communications.,
    [5] B. Host and B. Kra, Nilpotent Structures in Ergodic Theory, Mathematical surveys and monographs 236, Providence, Rhode Island: American Mathematical Society, 2018.
    [6] B. HostB. Kra and A. Maass, Nilsequences and a structure theorem for topological dynamical systems, Adv. in Math., 224 (2010), 103-129.  doi: 10.1016/j.aim.2009.11.009.
    [7] J. Qiu and J. Zhao, Top-nilpotent enveloping semigroups and pro-nilsystems, arXiv: 1911.05435.
    [8] S. Shao and X. Ye, Regionally proximal relation of order $d$ is an equivalence one for minimal systems and a combinatorial consequence, Adv. in Math., 231 (2012), 1786-1817.  doi: 10.1016/j.aim.2012.07.012.
    [9] J. de Vries, Elements of Topological Dynamics, Kluwer Academic Publishers Group, Dordrecht, 1993. doi: 10.1007/978-94-015-8171-4.
  • 加载中
SHARE

Article Metrics

HTML views(564) PDF downloads(227) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return