• Previous Article
    Global existence of strong solutions to a biological network formulation model in 2+1 dimensions
  • DCDS Home
  • This Issue
  • Next Article
    The focusing logarithmic Schrödinger equation: Analysis of breathers and nonlinear superposition
November  2020, 40(11): 6275-6288. doi: 10.3934/dcds.2020279

On Morawetz estimates with time-dependent weights for the Klein-Gordon equation

Department of Mathematics, Sungkyunkwan University, Suwon 16419, Republic of Korea

* Corresponding author: Ihyeok Seo

Received  November 2019 Revised  April 2020 Published  July 2020

Fund Project: This research was supported by NRF-2019R1F1A1061316

We obtain some new Morawetz estimates for the Klein-Gordon flow of the form
$ \begin{equation*} \big\| |\nabla|^{\sigma} e^{it \sqrt{1-\Delta}}f \big\|_{L^{2}_{x, t}(|(x, t)|^{-\alpha})} \lesssim \| f \|_{H^s} \end{equation*} $
where
$ \sigma, s\geq0 $
and
$ \alpha>0 $
. The conventional approaches to Morawetz estimates with
$ |x|^{-\alpha} $
are no longer available in the case of time-dependent weights
$ |(x, t)|^{-\alpha} $
. Here we instead apply the Littlewood-Paley theory with Muckenhoupt
$ A_2 $
weights to frequency localized estimates thereof that are obtained by making use of the bilinear interpolation between their bilinear form estimates which need to carefully analyze some relevant oscillatory integrals according to the different scaling of
$ \sqrt{1-\Delta} $
for low and high frequencies.
Citation: Jungkwon Kim, Hyeongjin Lee, Ihyeok Seo, Jihyeon Seok. On Morawetz estimates with time-dependent weights for the Klein-Gordon equation. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6275-6288. doi: 10.3934/dcds.2020279
References:
[1]

J. A. BarcelóJ. M. BennettA. CarberyA. Ruiz and M. C. Vilela, A note on weighted estimates for the Schrödinger operator, Rev. Mat. Complut, 21 (2008), 481-488.  doi: 10.5209/rev_REMA.2008.v21.n2.16405.

[2]

J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin-New York, 1976. doi: 10.1007/978-3-642-66451-9.

[3]

P. D'Ancona, On large potential perturbations of the Schrödinger, wave and Klein-Gordon equations, Commun. Pure Appl. Anal., 19 (2020), 609-640.  doi: 10.3934/cpaa.2020029.

[4]

L. Grafakos, Classical Fourier Analysis, 3$^{rd}$ edition, Graduate Texts in Mathematics, 249. Springer, New York, 2014. doi: 10.1007/978-1-4939-1194-3.

[5]

T. Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann., 162 (1965/1966), 258-279.  doi: 10.1007/BF01360915.

[6]

T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, in Studies in applied mathematics, Adv. Math. Suppl. Stud., Academic Press, New York, 8 (1983), 93–128.

[7]

T. Kato and K. Yajima, Some examples of smooth operators and the associated smoothing effect, Rev. Math. Phys., 1 (1989), 481-496.  doi: 10.1142/S0129055X89000171.

[8]

Y. Koh and I. Seo, Global well-posedness for higher-order Schrödinger equations in weighted $L^2$ spaces, Comm. Partial Differential Equations, 40 (2015), 1815-1830.  doi: 10.1080/03605302.2015.1048551.

[9]

Y. Koh and I. Seo, On weighted $L^2$ estimates for solutions of the wave equation, Proc. Amer. Math. Soc., 144 (2016), 3047-3061.  doi: 10.1090/proc/12951.

[10]

Y. Koh and I. Seo, Strichartz estimates for Schrödinger equations in weighted $L^2$ spaces and their applications, Discrete Contin. Dyn. Syst., 37 (2017), 4877-4906.  doi: 10.3934/dcds.2017210.

[11]

Y. Koh and I. Seo, Strichartz and smoothing estimates in weighted $L^2$ spaces and their applications, to appear in Indiana Univ. Math. J., arXiv: 1803.10430.

[12]

D. S. Kurtz, Littlewood-Paley and multiplier theorems on weighted $L^{p}$ spaces, Trans. Amer. Math. Soc., 259 (1980), 235-254.  doi: 10.2307/1998156.

[13]

H. LeeI. Seo and J. Seok, Local smoothing and Strichartz estimates for the Klein-Gordon equation with the inverse-square potential, Discrete Contin. Dyn. Syst., 40 (2020), 597-608.  doi: 10.3934/dcds.2020024.

[14]

W. Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc., 69 (1963), 766-770.  doi: 10.1090/S0002-9904-1963-11025-3.

[15]

C. S. Morawetz, Time decay for the nonlinear Klein-Gordon equation, Proc. Roy. Soc. London Ser. A, 306 (1968), 291-296.  doi: 10.1098/rspa.1968.0151.

[16]

T. Ozawa and K. M. Rogers, Sharp Morawetz estimates, J. Anal. Math., 121 (2013), 163-175.  doi: 10.1007/s11854-013-0031-0.

[17]

M. Ruzhansky and M. Sugimoto, Smoothing properties of evolution equations via canonical transforms and comparison principle, Proc. Lond. Math. Soc., 105 (2012), 393-423.  doi: 10.1112/plms/pds006.

[18]

I. Seo, A note on the Schrödinger smoothing effect, Math. Nachr., 292 (2019), 2481-2487.  doi: 10.1002/mana.201800502.

[19]

E. M. Stein, Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993. doi: 10.1515/9781400883929.

show all references

References:
[1]

J. A. BarcelóJ. M. BennettA. CarberyA. Ruiz and M. C. Vilela, A note on weighted estimates for the Schrödinger operator, Rev. Mat. Complut, 21 (2008), 481-488.  doi: 10.5209/rev_REMA.2008.v21.n2.16405.

[2]

J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin-New York, 1976. doi: 10.1007/978-3-642-66451-9.

[3]

P. D'Ancona, On large potential perturbations of the Schrödinger, wave and Klein-Gordon equations, Commun. Pure Appl. Anal., 19 (2020), 609-640.  doi: 10.3934/cpaa.2020029.

[4]

L. Grafakos, Classical Fourier Analysis, 3$^{rd}$ edition, Graduate Texts in Mathematics, 249. Springer, New York, 2014. doi: 10.1007/978-1-4939-1194-3.

[5]

T. Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann., 162 (1965/1966), 258-279.  doi: 10.1007/BF01360915.

[6]

T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, in Studies in applied mathematics, Adv. Math. Suppl. Stud., Academic Press, New York, 8 (1983), 93–128.

[7]

T. Kato and K. Yajima, Some examples of smooth operators and the associated smoothing effect, Rev. Math. Phys., 1 (1989), 481-496.  doi: 10.1142/S0129055X89000171.

[8]

Y. Koh and I. Seo, Global well-posedness for higher-order Schrödinger equations in weighted $L^2$ spaces, Comm. Partial Differential Equations, 40 (2015), 1815-1830.  doi: 10.1080/03605302.2015.1048551.

[9]

Y. Koh and I. Seo, On weighted $L^2$ estimates for solutions of the wave equation, Proc. Amer. Math. Soc., 144 (2016), 3047-3061.  doi: 10.1090/proc/12951.

[10]

Y. Koh and I. Seo, Strichartz estimates for Schrödinger equations in weighted $L^2$ spaces and their applications, Discrete Contin. Dyn. Syst., 37 (2017), 4877-4906.  doi: 10.3934/dcds.2017210.

[11]

Y. Koh and I. Seo, Strichartz and smoothing estimates in weighted $L^2$ spaces and their applications, to appear in Indiana Univ. Math. J., arXiv: 1803.10430.

[12]

D. S. Kurtz, Littlewood-Paley and multiplier theorems on weighted $L^{p}$ spaces, Trans. Amer. Math. Soc., 259 (1980), 235-254.  doi: 10.2307/1998156.

[13]

H. LeeI. Seo and J. Seok, Local smoothing and Strichartz estimates for the Klein-Gordon equation with the inverse-square potential, Discrete Contin. Dyn. Syst., 40 (2020), 597-608.  doi: 10.3934/dcds.2020024.

[14]

W. Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc., 69 (1963), 766-770.  doi: 10.1090/S0002-9904-1963-11025-3.

[15]

C. S. Morawetz, Time decay for the nonlinear Klein-Gordon equation, Proc. Roy. Soc. London Ser. A, 306 (1968), 291-296.  doi: 10.1098/rspa.1968.0151.

[16]

T. Ozawa and K. M. Rogers, Sharp Morawetz estimates, J. Anal. Math., 121 (2013), 163-175.  doi: 10.1007/s11854-013-0031-0.

[17]

M. Ruzhansky and M. Sugimoto, Smoothing properties of evolution equations via canonical transforms and comparison principle, Proc. Lond. Math. Soc., 105 (2012), 393-423.  doi: 10.1112/plms/pds006.

[18]

I. Seo, A note on the Schrödinger smoothing effect, Math. Nachr., 292 (2019), 2481-2487.  doi: 10.1002/mana.201800502.

[19]

E. M. Stein, Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993. doi: 10.1515/9781400883929.

Figure 1.  The range of $ (\alpha, \sigma) $ for (1) and (4) with $ s = 1/2 $
[1]

Hyeongjin Lee, Ihyeok Seo, Jihyeon Seok. Local smoothing and Strichartz estimates for the Klein-Gordon equation with the inverse-square potential. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 597-608. doi: 10.3934/dcds.2020024

[2]

Hironobu Sasaki. Remark on the scattering problem for the Klein-Gordon equation with power nonlinearity. Conference Publications, 2007, 2007 (Special) : 903-911. doi: 10.3934/proc.2007.2007.903

[3]

Satoshi Masaki, Jun-ichi Segata. Modified scattering for the Klein-Gordon equation with the critical nonlinearity in three dimensions. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1595-1611. doi: 10.3934/cpaa.2018076

[4]

Karen Yagdjian. The semilinear Klein-Gordon equation in de Sitter spacetime. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 679-696. doi: 10.3934/dcdss.2009.2.679

[5]

Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359

[6]

Stefano Pasquali. A Nekhoroshev type theorem for the nonlinear Klein-Gordon equation with potential. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3573-3594. doi: 10.3934/dcdsb.2017215

[7]

Elena Kopylova. On dispersion decay for 3D Klein-Gordon equation. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5765-5780. doi: 10.3934/dcds.2018251

[8]

Chi-Kun Lin, Kung-Chien Wu. On the fluid dynamical approximation to the nonlinear Klein-Gordon equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2233-2251. doi: 10.3934/dcds.2012.32.2233

[9]

Hironobu Sasaki. Small data scattering for the Klein-Gordon equation with cubic convolution nonlinearity. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 973-981. doi: 10.3934/dcds.2006.15.973

[10]

Jun Yang. Vortex structures for Klein-Gordon equation with Ginzburg-Landau nonlinearity. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2359-2388. doi: 10.3934/dcds.2014.34.2359

[11]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[12]

Changxing Miao, Jiqiang Zheng. Scattering theory for energy-supercritical Klein-Gordon equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2073-2094. doi: 10.3934/dcdss.2016085

[13]

Qinghua Luo. Damped Klein-Gordon equation with variable diffusion coefficient. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3959-3974. doi: 10.3934/cpaa.2021139

[14]

Oana Ivanovici. Dispersive estimates for the wave and the Klein-Gordon equations in large time inside the Friedlander domain. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5707-5742. doi: 10.3934/dcds.2021093

[15]

Marcelo M. Cavalcanti, Leonel G. Delatorre, Daiane C. Soares, Victor Hugo Gonzalez Martinez, Janaina P. Zanchetta. Uniform stabilization of the Klein-Gordon system. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5131-5156. doi: 10.3934/cpaa.2020230

[16]

Katharina Schratz, Xiaofei Zhao. On comparison of asymptotic expansion techniques for nonlinear Klein-Gordon equation in the nonrelativistic limit regime. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 2841-2865. doi: 10.3934/dcdsb.2020043

[17]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure and Applied Analysis, 2021, 20 (2) : 737-754. doi: 10.3934/cpaa.2020287

[18]

Peter Bates, Chunlei Zhang. Traveling pulses for the Klein-Gordon equation on a lattice or continuum with long-range interaction. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 235-252. doi: 10.3934/dcds.2006.16.235

[19]

Milena Dimova, Natalia Kolkovska, Nikolai Kutev. Global behavior of the solutions to nonlinear Klein-Gordon equation with critical initial energy. Electronic Research Archive, 2020, 28 (2) : 671-689. doi: 10.3934/era.2020035

[20]

Benoît Grébert, Tiphaine Jézéquel, Laurent Thomann. Dynamics of Klein-Gordon on a compact surface near a homoclinic orbit. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3485-3510. doi: 10.3934/dcds.2014.34.3485

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (241)
  • HTML views (100)
  • Cited by (0)

[Back to Top]