-
Previous Article
Matching for a family of infinite measure continued fraction transformations
- DCDS Home
- This Issue
-
Next Article
On Morawetz estimates with time-dependent weights for the Klein-Gordon equation
Global existence of strong solutions to a biological network formulation model in 2+1 dimensions
Department of Mathematics & Statistics, Mississippi State University, Mississippi State, MS 39762, USA |
In this paper we study the initial boundary value problem for the system $ -\mbox{div}\left[(I+\mathbf{m} \mathbf{m}^T)\nabla p\right] = s(x), \ \ \mathbf{m}_t-\alpha^2\Delta\mathbf{m}+|\mathbf{m}|^{2(\gamma-1)}\mathbf{m} = \beta^2(\mathbf{m}\cdot\nabla p)\nabla p $ in two space dimensions. This problem has been proposed as a continuum model for biological transportation networks. The mathematical challenge is due to the presence of cubic nonlinearities, also known as trilinear forms, in the system. We obtain a weak solution $ (\mathbf{m}, p) $ with both $ |\nabla p| $ and $ |\nabla\mathbf{m}| $ being bounded. The result immediately triggers a bootstrap argument which can yield higher regularity for the weak solution. This is achieved by deriving an equation for $ v\equiv(I+\mathbf{m} \mathbf{m}^T)\nabla p\cdot\nabla p $, and then suitably applying the De Giorge iteration method to the equation.
References:
[1] |
G. Albi, M. Artina, M. Fornasier and P. A. Markowich,
Biological transportation networks: Modeling and simulation, Anal. Appl. (Singap.), 14 (2016), 185-206.
doi: 10.1142/S0219530515400059. |
[2] |
G. Albi, M. Burger, J. Haskovec, P. Markowich and M. Schlottbom, Continuum modeling of biological network formulation, Active Particles Vol.I - Advances in Theory, Models, and Applications, 1–48, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 2017. |
[3] |
G. Alessandrini,
Critical points of solutions of elliptic equations in two variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 14 (1987), 229-256.
|
[4] |
S. Bernstein,
Sur la généralization du problème de Dirichlet, Math. Ann., 62 (1906), 253-271.
doi: 10.1007/BF01449980. |
[5] |
E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-0895-2. |
[6] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983.
doi: 10.1007/978-3-642-61798-0. |
[7] |
J. Haskovec, P. Markowich and B. Perthame,
Mathematical analysis of a PDE system for biological network formulation, Comm. Partial Differential Equations, 40 (2015), 918-956.
doi: 10.1080/03605302.2014.968792. |
[8] |
J. Haskovec, P. Markowich, B. Perthame and M. Schlottbom,
Notes on a PDE system for biological network formulation, Nonlinear Anal., 138 (2016), 127-155.
doi: 10.1016/j.na.2015.12.018. |
[9] |
D. Hu, Optimization, Adaptation, and Initialization of Biological Transport Networks, Workshop on multi scale problems from physics, biology, and material sciences, May 28–31, 2014, Shanghai. |
[10] |
D. Hu and D. Cai, Adaptation and optimization of biological transport networks, Phys. Rev. Lett., 111 (2013), 138701.
doi: 10.1103/PhysRevLett.111.138701. |
[11] |
Q. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, Tran. Math. Monographs, Vol. 23, AMS, Providence, RI, 1968. |
[12] |
B. Li, On the blown-up criterion and global existence of a nonlinear PDE system in biological transportation networks, Kinet. Relat. Models, 12 (2019), 1131–1162.
doi: 10.3934/krm.2019043. |
[13] |
J.-G. Liu and X. Xu, Partial regularity of weak solutions to a PDE system with cubic nonlinearity, J. Differential Equations, 264 (2018), 5489–5526.
doi: 10.1016/j.jde.2018.01.001. |
[14] |
N. G. Meyers, An $L^{p}$e-estimate for the gradient of solution of second order elliptic divergence
equations, Ann. Scuola Norm. Pisa Cl. Sci. (3), 17 (1963), 189–206. |
[15] |
L. A. Peletier and J. Serrin, Gradient bounds and Liouville theorems for quasilinear elliptic
equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5 (1978), 65–104. |
[16] |
J.-F. Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland Math. Studies, Vol. 134, North-Holland, Amsterdam, 1987. |
[17] |
J. Shen and B. Li, A Priori estimates for a nonlinear system with some essential symmetrical structures, Symmetry, 11 (2019), Article # 852.
doi: 10.3390/sym11070852. |
[18] |
R. P. Sperb, Maximum Principle and their Applications, Academic Press, New York, 1981.
![]() ![]() |
[19] |
X. Xu, Partial regularity of solutions to a class of degenerate systems, Trans. Amer. Math. Soc., 349 (1997), 1973–1992.
doi: 10.1090/S0002-9947-97-01734-0. |
[20] |
X. Xu,
Regularity theorems for a biological network formulation model in two space dimensions, Kinet. Relat. Models, 11 (2018), 397-408.
doi: 10.3934/krm.2018018. |
[21] |
X. Xu, Partial regularity of weak solutions and life-span of smooth solutions to a biological network formulation model, SN Partial Differential Equations and Applications, to appear., arXiv: 1706.06057, V5, 2018. |
[22] |
X. Xu, Global existence of strong solutions to a groundwater flow problem, Z. angew. Math. Phys., 71 (2020), to appear. arXiv: 1912.03793 [math.AP], 2019. |
[23] |
G. Yuan,
Regularity of solutions of the thermistor problem, Appl. Anal., 53 (1994), 149-156.
doi: 10.1080/00036819408840253. |
show all references
References:
[1] |
G. Albi, M. Artina, M. Fornasier and P. A. Markowich,
Biological transportation networks: Modeling and simulation, Anal. Appl. (Singap.), 14 (2016), 185-206.
doi: 10.1142/S0219530515400059. |
[2] |
G. Albi, M. Burger, J. Haskovec, P. Markowich and M. Schlottbom, Continuum modeling of biological network formulation, Active Particles Vol.I - Advances in Theory, Models, and Applications, 1–48, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 2017. |
[3] |
G. Alessandrini,
Critical points of solutions of elliptic equations in two variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 14 (1987), 229-256.
|
[4] |
S. Bernstein,
Sur la généralization du problème de Dirichlet, Math. Ann., 62 (1906), 253-271.
doi: 10.1007/BF01449980. |
[5] |
E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-0895-2. |
[6] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983.
doi: 10.1007/978-3-642-61798-0. |
[7] |
J. Haskovec, P. Markowich and B. Perthame,
Mathematical analysis of a PDE system for biological network formulation, Comm. Partial Differential Equations, 40 (2015), 918-956.
doi: 10.1080/03605302.2014.968792. |
[8] |
J. Haskovec, P. Markowich, B. Perthame and M. Schlottbom,
Notes on a PDE system for biological network formulation, Nonlinear Anal., 138 (2016), 127-155.
doi: 10.1016/j.na.2015.12.018. |
[9] |
D. Hu, Optimization, Adaptation, and Initialization of Biological Transport Networks, Workshop on multi scale problems from physics, biology, and material sciences, May 28–31, 2014, Shanghai. |
[10] |
D. Hu and D. Cai, Adaptation and optimization of biological transport networks, Phys. Rev. Lett., 111 (2013), 138701.
doi: 10.1103/PhysRevLett.111.138701. |
[11] |
Q. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, Tran. Math. Monographs, Vol. 23, AMS, Providence, RI, 1968. |
[12] |
B. Li, On the blown-up criterion and global existence of a nonlinear PDE system in biological transportation networks, Kinet. Relat. Models, 12 (2019), 1131–1162.
doi: 10.3934/krm.2019043. |
[13] |
J.-G. Liu and X. Xu, Partial regularity of weak solutions to a PDE system with cubic nonlinearity, J. Differential Equations, 264 (2018), 5489–5526.
doi: 10.1016/j.jde.2018.01.001. |
[14] |
N. G. Meyers, An $L^{p}$e-estimate for the gradient of solution of second order elliptic divergence
equations, Ann. Scuola Norm. Pisa Cl. Sci. (3), 17 (1963), 189–206. |
[15] |
L. A. Peletier and J. Serrin, Gradient bounds and Liouville theorems for quasilinear elliptic
equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5 (1978), 65–104. |
[16] |
J.-F. Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland Math. Studies, Vol. 134, North-Holland, Amsterdam, 1987. |
[17] |
J. Shen and B. Li, A Priori estimates for a nonlinear system with some essential symmetrical structures, Symmetry, 11 (2019), Article # 852.
doi: 10.3390/sym11070852. |
[18] |
R. P. Sperb, Maximum Principle and their Applications, Academic Press, New York, 1981.
![]() ![]() |
[19] |
X. Xu, Partial regularity of solutions to a class of degenerate systems, Trans. Amer. Math. Soc., 349 (1997), 1973–1992.
doi: 10.1090/S0002-9947-97-01734-0. |
[20] |
X. Xu,
Regularity theorems for a biological network formulation model in two space dimensions, Kinet. Relat. Models, 11 (2018), 397-408.
doi: 10.3934/krm.2018018. |
[21] |
X. Xu, Partial regularity of weak solutions and life-span of smooth solutions to a biological network formulation model, SN Partial Differential Equations and Applications, to appear., arXiv: 1706.06057, V5, 2018. |
[22] |
X. Xu, Global existence of strong solutions to a groundwater flow problem, Z. angew. Math. Phys., 71 (2020), to appear. arXiv: 1912.03793 [math.AP], 2019. |
[23] |
G. Yuan,
Regularity of solutions of the thermistor problem, Appl. Anal., 53 (1994), 149-156.
doi: 10.1080/00036819408840253. |
[1] |
Xiangsheng Xu. Regularity theorems for a biological network formulation model in two space dimensions. Kinetic and Related Models, 2018, 11 (2) : 397-408. doi: 10.3934/krm.2018018 |
[2] |
Luis A. Caffarelli, Alexis F. Vasseur. The De Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics. Discrete and Continuous Dynamical Systems - S, 2010, 3 (3) : 409-427. doi: 10.3934/dcdss.2010.3.409 |
[3] |
Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017 |
[4] |
Changfeng Gui. On some problems related to de Giorgi’s conjecture. Communications on Pure and Applied Analysis, 2003, 2 (1) : 101-106. doi: 10.3934/cpaa.2003.2.101 |
[5] |
Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312 |
[6] |
Paolo Baroni, Agnese Di Castro, Giampiero Palatucci. Intrinsic geometry and De Giorgi classes for certain anisotropic problems. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 647-659. doi: 10.3934/dcdss.2017032 |
[7] |
Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013 |
[8] |
Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043 |
[9] |
Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339 |
[10] |
Jiahui Chen, Rundong Zhao, Yiying Tong, Guo-Wei Wei. Evolutionary de Rham-Hodge method. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3785-3821. doi: 10.3934/dcdsb.2020257 |
[11] |
Qiang Du, Manlin Li. On the stochastic immersed boundary method with an implicit interface formulation. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 373-389. doi: 10.3934/dcdsb.2011.15.373 |
[12] |
Zhong-Zhi Bai. On convergence of the inner-outer iteration method for computing PageRank. Numerical Algebra, Control and Optimization, 2012, 2 (4) : 855-862. doi: 10.3934/naco.2012.2.855 |
[13] |
Tahereh Salimi Siahkolaei, Davod Khojasteh Salkuyeh. A preconditioned SSOR iteration method for solving complex symmetric system of linear equations. Numerical Algebra, Control and Optimization, 2019, 9 (4) : 483-492. doi: 10.3934/naco.2019033 |
[14] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[15] |
Chiara Zanini, Fabio Zanolin. Periodic solutions for a class of second order ODEs with a Nagumo cubic type nonlinearity. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 4045-4067. doi: 10.3934/dcds.2012.32.4045 |
[16] |
Hironobu Sasaki. Small data scattering for the Klein-Gordon equation with cubic convolution nonlinearity. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 973-981. doi: 10.3934/dcds.2006.15.973 |
[17] |
Kai Yan, Zhijun Qiao, Yufeng Zhang. On a new two-component $b$-family peakon system with cubic nonlinearity. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5415-5442. doi: 10.3934/dcds.2018239 |
[18] |
Ying Fu. A note on the Cauchy problem of a modified Camassa-Holm equation with cubic nonlinearity. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2011-2039. doi: 10.3934/dcds.2015.35.2011 |
[19] |
Kolade M. Owolabi, Kailash C. Patidar, Albert Shikongo. Efficient numerical method for a model arising in biological stoichiometry of tumour dynamics. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 591-613. doi: 10.3934/dcdss.2019038 |
[20] |
Olusola Kolebaje, Ebenezer Bonyah, Lateef Mustapha. The first integral method for two fractional non-linear biological models. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 487-502. doi: 10.3934/dcdss.2019032 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]