• Previous Article
    Compactness of transfer operators and spectral representation of Ruelle zeta functions for super-continuous functions
  • DCDS Home
  • This Issue
  • Next Article
    Global existence of strong solutions to a biological network formulation model in 2+1 dimensions
November  2020, 40(11): 6309-6330. doi: 10.3934/dcds.2020281

Matching for a family of infinite measure continued fraction transformations

1. 

Department of Mathematics, Leiden University, Niels Bohrweg 1, 2333CA Leiden, The Netherlands

2. 

John Cabot University, 00165 Roma, Italy, Via della Lungara 233, 00165 Roma, Italy

Received  December 2019 Revised  May 2020 Published  July 2020

Fund Project: The third author is supported by the NWO TOP-Grant No. 614.001.509

As a natural counterpart to Nakada's $ \alpha $-continued fraction maps, we study a one-parameter family of continued fraction transformations with an indifferent fixed point. We prove that matching holds for Lebesgue almost every parameter in this family and that the exceptional set has Hausdorff dimension 1. Due to this matching property, we can construct a planar version of the natural extension for a large part of the parameter space. We use this to obtain an explicit expression for the density of the unique infinite $ \sigma $-finite absolutely continuous invariant measure and to compute the Krengel entropy, return sequence and wandering rate of the corresponding maps.

Citation: Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281
References:
[1]

J. Aaronson, An Introduction to Infinite Ergodic Theory, Mathematical Surveys and Monographs, 50, American Mathematical Society, Providence, RI, 1997. doi: 10.1090/surv/050.  Google Scholar

[2]

P. Arnoux and T. A. Schmidt, Cross sections for geodesic flows and $\alpha$-continued fractions, Nonlinearity, 26 (2013), 711-726.  doi: 10.1088/0951-7715/26/3/711.  Google Scholar

[3]

C. BonannoC. CarminatiS. Isola and G. Tiozzo, Dynamics of continued fractions and kneading sequences of unimodal maps, Discrete Contin. Dyn. Syst., 33 (2013), 1313-1332.  doi: 10.3934/dcds.2013.33.1313.  Google Scholar

[4]

V. Botella-Soler, J. A. Oteo, J. Ros and P. Glendinning, Lyapunov exponent and topological entropy plateaus in piecewise linear maps, J. Phys. A, 46 (2013), 26pp. doi: 10.1088/1751-8113/46/12/125101.  Google Scholar

[5]

H. BruinC. Carminati and C. Kalle, Matching for generalised $\beta$-transformations, Indag. Math. (N.S.), 28 (2017), 55-73.  doi: 10.1016/j.indag.2016.11.005.  Google Scholar

[6]

H. BruinC. CarminatiS. Marmi and A. Profeti, Matching in a family of piecewise affine maps, Nonlinearity, 32 (2019), 172-208.  doi: 10.1088/1361-6544/aae935.  Google Scholar

[7]

C. CarminatiS. Isola and G. Tiozzo, Continued fractions with $SL(2, Z)$-branches: Combinatorics and entropy, Trans. Amer. Math. Soc., 370 (2018), 4927-4973.  doi: 10.1090/tran/7109.  Google Scholar

[8]

C. CarminatiS. MarmiA. Profeti and G. Tiozzo, The entropy of $\alpha$-continued fractions: Numerical results, Nonlinearity, 23 (2010), 2429-2456.  doi: 10.1088/0951-7715/23/10/005.  Google Scholar

[9]

C. Carminati and G. Tiozzo, A canonical thickening of $\Bbb Q$ and the entropy of $\alpha$-continued fraction transformations, Ergodic Theory Dynam. Systems, 32 (2012), 1249-1269.  doi: 10.1017/S0143385711000447.  Google Scholar

[10]

C. Carminati and G. Tiozzo, Tuning and plateaux for the entropy of $\alpha$-continued fractions, Nonlinearity, 26 (2013), 1049-1070.  doi: 10.1088/0951-7715/26/4/1049.  Google Scholar

[11]

D. Cosper and M. Misiurewicz, Entropy locking, Fund. Math., 241 (2018), 83-96.  doi: 10.4064/fm330-5-2017.  Google Scholar

[12]

K. DajaniD. HensleyC. Kraaikamp and V. Masarotto, Arithmetic and ergodic properties of 'flipped' continued fraction algorithms, Acta Arith., 153 (2012), 51-79.  doi: 10.4064/aa153-1-4.  Google Scholar

[13]

K. Dajani and C. Kalle, Invariant measures, matching and the frequency of 0 for signed binary expansions, preprint, arXiv: 1703.06335. Google Scholar

[14]

K. Dajani and C. Kraaikamp, The mother of all continued fractions, Colloq. Math., 84/85 (2000), 109-123.  doi: 10.4064/cm-84/85-1-109-123.  Google Scholar

[15]

K. DajaniC. Kraaikamp and W. Steiner, Metrical theory for $\alpha$-Rosen fractions, J. Eur. Math. Soc. (JEMS), 11 (2009), 1259-1283.  doi: 10.4171/JEMS/181.  Google Scholar

[16]

A. Haas, Invariant measures and natural extensions, Canad. Math. Bull., 45 (2002), 97-108.  doi: 10.4153/CMB-2002-011-4.  Google Scholar

[17]

Y. Hartono and C. Kraaikamp, On continued fractions with odd partial quotients, Rev. Roumaine Math. Pures Appl., 47 (2002), 43-62.   Google Scholar

[18]

C. Kalle, Isomorphisms between positive and negative $\beta$-transformations, Ergodic Theory Dynam. Systems, 34 (2014), 153-170.  doi: 10.1017/etds.2012.127.  Google Scholar

[19]

C. Kalle and W. Steiner, Beta-expansions, natural extensions and multiple tilings associated with Pisot units, Trans. Amer. Math. Soc., 364 (2012), 2281-2318.  doi: 10.1090/S0002-9947-2012-05362-1.  Google Scholar

[20]

S. Katok and I. Ugarcovici, Structure of attractors for $(a, b)$-continued fraction transformations, J. Mod. Dyn., 4 (2010), 637-691.  doi: 10.3934/jmd.2010.4.637.  Google Scholar

[21]

C. Kraaikamp, A new class of continued fraction expansions, Acta Arith., 57 (1991), 1-39.  doi: 10.4064/aa-57-1-1-39.  Google Scholar

[22]

C. KraaikampT. A. Schmidt and W. Steiner, Natural extensions and entropy of $\alpha$-continued fractions, Nonlinearity, 25 (2012), 2207-2243.  doi: 10.1088/0951-7715/25/8/2207.  Google Scholar

[23]

U. Krengel, Entropy of conservative transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 7 (1967), 161-181.  doi: 10.1007/BF00532635.  Google Scholar

[24]

L. Lewin, Polylogarithms and Associated Aunctions, North-Holland Publishing Co., New York-Amsterdam, 1981.  Google Scholar

[25]

L. Luzzi and S. Marmi, On the entropy of Japanese continued fractions, Discrete Contin. Dyn. Syst., 20 (2008), 673-711.  doi: 10.3934/dcds.2008.20.673.  Google Scholar

[26]

S. MarmiP. Moussa and J.-C. Yoccoz, The Brjuno functions and their regularity properties, Comm. Math. Phys., 186 (1997), 265-293.  doi: 10.1007/s002200050110.  Google Scholar

[27]

H. Nakada, Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math., 4 (1981), 399-426.  doi: 10.3836/tjm/1270215165.  Google Scholar

[28]

H. Nakada and R. Natsui, The non-monotonicity of the entropy of $\alpha$-continued fraction transformations, Nonlinearity, 21 (2008), 1207-1225.  doi: 10.1088/0951-7715/21/6/003.  Google Scholar

[29]

O. Perron, Die Lehre von den Kettenbrüchen. Dritte, verbesserte und erweiterte Aufl. Bd. II. Analytisch-funktionentheoretische Kettenbrüche, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1957.  Google Scholar

[30]

V. A. Rohlin, Exact endomorphisms of a Lebesgue space, Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 499-530.   Google Scholar

[31]

B. Schratzberger, $S$-expansions in dimension two, J. Théor. Nombres Bordeaux, 16 (2004), 705-732.  doi: 10.5802/jtnb.467.  Google Scholar

[32]

C. E. Silva, On $\mu$-recurrent nonsingular endomorphisms, Israel J. Math., 61 (1988), 1-13.  doi: 10.1007/BF02776298.  Google Scholar

[33]

C. E. Silva and P. Thieullen, The subadditive ergodic theorem and recurrence properties of Markovian transformations, J. Math. Anal. Appl., 154 (1991), 83-99.  doi: 10.1016/0022-247X(91)90072-8.  Google Scholar

[34]

M. Thaler, Transformations on $[0, \, 1]$ with infinite invariant measures, Israel J. Math., 46 (1983), 67-96.  doi: 10.1007/BF02760623.  Google Scholar

[35]

G. Tiozzo, The entropy of Nakada's $\alpha$-continued fractions: Analytical results, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13 (2014), 1009-1037.   Google Scholar

[36]

R. Zweimüller, Ergodic structure and invariant densities of non-Markovian interval maps with indifferent fixed points, Nonlinearity, 11 (1998), 1263-1276.  doi: 10.1088/0951-7715/11/5/005.  Google Scholar

[37]

R. Zweimüller, Ergodic properties of infinite measure-preserving interval maps with indifferent fixed points, Ergodic Theory Dynam. Systems, 20 (2000), 1519-1549.  doi: 10.1017/S0143385700000821.  Google Scholar

[38]

R. Zweimüller, Surrey Notes on Infinite Ergodic Theory, 2009. Available from: http://mat.univie.ac.at/ zweimueller/MyPub/SurreyNotes.pdf. Google Scholar

show all references

References:
[1]

J. Aaronson, An Introduction to Infinite Ergodic Theory, Mathematical Surveys and Monographs, 50, American Mathematical Society, Providence, RI, 1997. doi: 10.1090/surv/050.  Google Scholar

[2]

P. Arnoux and T. A. Schmidt, Cross sections for geodesic flows and $\alpha$-continued fractions, Nonlinearity, 26 (2013), 711-726.  doi: 10.1088/0951-7715/26/3/711.  Google Scholar

[3]

C. BonannoC. CarminatiS. Isola and G. Tiozzo, Dynamics of continued fractions and kneading sequences of unimodal maps, Discrete Contin. Dyn. Syst., 33 (2013), 1313-1332.  doi: 10.3934/dcds.2013.33.1313.  Google Scholar

[4]

V. Botella-Soler, J. A. Oteo, J. Ros and P. Glendinning, Lyapunov exponent and topological entropy plateaus in piecewise linear maps, J. Phys. A, 46 (2013), 26pp. doi: 10.1088/1751-8113/46/12/125101.  Google Scholar

[5]

H. BruinC. Carminati and C. Kalle, Matching for generalised $\beta$-transformations, Indag. Math. (N.S.), 28 (2017), 55-73.  doi: 10.1016/j.indag.2016.11.005.  Google Scholar

[6]

H. BruinC. CarminatiS. Marmi and A. Profeti, Matching in a family of piecewise affine maps, Nonlinearity, 32 (2019), 172-208.  doi: 10.1088/1361-6544/aae935.  Google Scholar

[7]

C. CarminatiS. Isola and G. Tiozzo, Continued fractions with $SL(2, Z)$-branches: Combinatorics and entropy, Trans. Amer. Math. Soc., 370 (2018), 4927-4973.  doi: 10.1090/tran/7109.  Google Scholar

[8]

C. CarminatiS. MarmiA. Profeti and G. Tiozzo, The entropy of $\alpha$-continued fractions: Numerical results, Nonlinearity, 23 (2010), 2429-2456.  doi: 10.1088/0951-7715/23/10/005.  Google Scholar

[9]

C. Carminati and G. Tiozzo, A canonical thickening of $\Bbb Q$ and the entropy of $\alpha$-continued fraction transformations, Ergodic Theory Dynam. Systems, 32 (2012), 1249-1269.  doi: 10.1017/S0143385711000447.  Google Scholar

[10]

C. Carminati and G. Tiozzo, Tuning and plateaux for the entropy of $\alpha$-continued fractions, Nonlinearity, 26 (2013), 1049-1070.  doi: 10.1088/0951-7715/26/4/1049.  Google Scholar

[11]

D. Cosper and M. Misiurewicz, Entropy locking, Fund. Math., 241 (2018), 83-96.  doi: 10.4064/fm330-5-2017.  Google Scholar

[12]

K. DajaniD. HensleyC. Kraaikamp and V. Masarotto, Arithmetic and ergodic properties of 'flipped' continued fraction algorithms, Acta Arith., 153 (2012), 51-79.  doi: 10.4064/aa153-1-4.  Google Scholar

[13]

K. Dajani and C. Kalle, Invariant measures, matching and the frequency of 0 for signed binary expansions, preprint, arXiv: 1703.06335. Google Scholar

[14]

K. Dajani and C. Kraaikamp, The mother of all continued fractions, Colloq. Math., 84/85 (2000), 109-123.  doi: 10.4064/cm-84/85-1-109-123.  Google Scholar

[15]

K. DajaniC. Kraaikamp and W. Steiner, Metrical theory for $\alpha$-Rosen fractions, J. Eur. Math. Soc. (JEMS), 11 (2009), 1259-1283.  doi: 10.4171/JEMS/181.  Google Scholar

[16]

A. Haas, Invariant measures and natural extensions, Canad. Math. Bull., 45 (2002), 97-108.  doi: 10.4153/CMB-2002-011-4.  Google Scholar

[17]

Y. Hartono and C. Kraaikamp, On continued fractions with odd partial quotients, Rev. Roumaine Math. Pures Appl., 47 (2002), 43-62.   Google Scholar

[18]

C. Kalle, Isomorphisms between positive and negative $\beta$-transformations, Ergodic Theory Dynam. Systems, 34 (2014), 153-170.  doi: 10.1017/etds.2012.127.  Google Scholar

[19]

C. Kalle and W. Steiner, Beta-expansions, natural extensions and multiple tilings associated with Pisot units, Trans. Amer. Math. Soc., 364 (2012), 2281-2318.  doi: 10.1090/S0002-9947-2012-05362-1.  Google Scholar

[20]

S. Katok and I. Ugarcovici, Structure of attractors for $(a, b)$-continued fraction transformations, J. Mod. Dyn., 4 (2010), 637-691.  doi: 10.3934/jmd.2010.4.637.  Google Scholar

[21]

C. Kraaikamp, A new class of continued fraction expansions, Acta Arith., 57 (1991), 1-39.  doi: 10.4064/aa-57-1-1-39.  Google Scholar

[22]

C. KraaikampT. A. Schmidt and W. Steiner, Natural extensions and entropy of $\alpha$-continued fractions, Nonlinearity, 25 (2012), 2207-2243.  doi: 10.1088/0951-7715/25/8/2207.  Google Scholar

[23]

U. Krengel, Entropy of conservative transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 7 (1967), 161-181.  doi: 10.1007/BF00532635.  Google Scholar

[24]

L. Lewin, Polylogarithms and Associated Aunctions, North-Holland Publishing Co., New York-Amsterdam, 1981.  Google Scholar

[25]

L. Luzzi and S. Marmi, On the entropy of Japanese continued fractions, Discrete Contin. Dyn. Syst., 20 (2008), 673-711.  doi: 10.3934/dcds.2008.20.673.  Google Scholar

[26]

S. MarmiP. Moussa and J.-C. Yoccoz, The Brjuno functions and their regularity properties, Comm. Math. Phys., 186 (1997), 265-293.  doi: 10.1007/s002200050110.  Google Scholar

[27]

H. Nakada, Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math., 4 (1981), 399-426.  doi: 10.3836/tjm/1270215165.  Google Scholar

[28]

H. Nakada and R. Natsui, The non-monotonicity of the entropy of $\alpha$-continued fraction transformations, Nonlinearity, 21 (2008), 1207-1225.  doi: 10.1088/0951-7715/21/6/003.  Google Scholar

[29]

O. Perron, Die Lehre von den Kettenbrüchen. Dritte, verbesserte und erweiterte Aufl. Bd. II. Analytisch-funktionentheoretische Kettenbrüche, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1957.  Google Scholar

[30]

V. A. Rohlin, Exact endomorphisms of a Lebesgue space, Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 499-530.   Google Scholar

[31]

B. Schratzberger, $S$-expansions in dimension two, J. Théor. Nombres Bordeaux, 16 (2004), 705-732.  doi: 10.5802/jtnb.467.  Google Scholar

[32]

C. E. Silva, On $\mu$-recurrent nonsingular endomorphisms, Israel J. Math., 61 (1988), 1-13.  doi: 10.1007/BF02776298.  Google Scholar

[33]

C. E. Silva and P. Thieullen, The subadditive ergodic theorem and recurrence properties of Markovian transformations, J. Math. Anal. Appl., 154 (1991), 83-99.  doi: 10.1016/0022-247X(91)90072-8.  Google Scholar

[34]

M. Thaler, Transformations on $[0, \, 1]$ with infinite invariant measures, Israel J. Math., 46 (1983), 67-96.  doi: 10.1007/BF02760623.  Google Scholar

[35]

G. Tiozzo, The entropy of Nakada's $\alpha$-continued fractions: Analytical results, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13 (2014), 1009-1037.   Google Scholar

[36]

R. Zweimüller, Ergodic structure and invariant densities of non-Markovian interval maps with indifferent fixed points, Nonlinearity, 11 (1998), 1263-1276.  doi: 10.1088/0951-7715/11/5/005.  Google Scholar

[37]

R. Zweimüller, Ergodic properties of infinite measure-preserving interval maps with indifferent fixed points, Ergodic Theory Dynam. Systems, 20 (2000), 1519-1549.  doi: 10.1017/S0143385700000821.  Google Scholar

[38]

R. Zweimüller, Surrey Notes on Infinite Ergodic Theory, 2009. Available from: http://mat.univie.ac.at/ zweimueller/MyPub/SurreyNotes.pdf. Google Scholar

Figure 1.  The Gauss map $ G $ and the flipped map $ R = 1-G $ in (a) and (b). The folded $ \alpha $-continued fraction map $ \hat S_\alpha $ and the flipped $ \alpha $-continued fraction map $ T_\alpha $ for $ \alpha < \frac12 $ in (c) and (e) and for $ \alpha > \frac12 $ in (d) and (f)
Figure 4.  Numerical simulations of $ \mathcal{D}_\alpha $ for $ \alpha > \frac{1}{2}\sqrt{2} $
Figure 2.  The transformation $ \mathcal{T}_{\alpha} $ maps areas on the top to areas on the bottom with the same color or pattern
Figure 3.  The maps $ \mathcal T_\alpha $ for various values of $ \alpha $. Areas on the left are mapped to areas on the right with the same color or pattern
Figure 5.  Maps $ T_\alpha $ and $ T_{\alpha'} $ that are not $ c $-isomorphic for any $ c \in \mathbb (0, \infty] $
Table 1.  Invariant densities for $ \alpha \in \big[\frac12, \frac12 \sqrt 2 \big] $
$ \boldsymbol{\alpha} $ Density $ \boldsymbol{f_\alpha} $
$ [\frac12, g) $ $ \frac{1}{1-x} \mathbf 1_{[1-\alpha, \alpha]}(x) + \frac1{x(1-x)} \mathbf 1_{[\alpha, \frac{1-\alpha}{\alpha} ]} (x)+ \frac{x^2+1}{x(1-x^2)} \mathbf 1_{[\frac{1-\alpha}{\alpha},1]} (x) $
$ [g, \frac23) $ $ \big(\frac{1}{1-x} + \frac{1}{x+\frac{1}{g-1}}\big)\mathbf 1_{[1-\alpha, \frac{2\alpha-1}{\alpha}]} (x) + \frac1{1-x} \mathbf 1_{[\frac{2\alpha-1}{\alpha}, \alpha ]} (x)+ $
$ + \big(\frac{1}{1-x} + \frac{1}{x} -\frac{1}{x+\frac{1}{g}}\big) \mathbf 1_{[\alpha,\frac{2\alpha-1}{1-\alpha}]} (x)+ \frac{x^2+1}{x(1-x^2)} \mathbf 1_{[\frac{2\alpha-1}{1-\alpha},1]} (x) $
$ [\frac23, \frac12 \sqrt{2}] $ $ \big(\frac{1}{1-x} + \frac{1}{x+\frac{1}{g-1}}\big)\mathbf 1_{[1-\alpha, \frac{2\alpha-1}{\alpha}]} (x) + \frac1{1-x} \mathbf 1_{[\frac{2\alpha-1}{\alpha}, \alpha ]} (x) + \big(\frac{1}{1-x} + \frac{1}{x} -\frac{1}{x+\frac{1}{g}}\big) \mathbf 1_{[\alpha,\frac{1-\alpha}{2\alpha-1}]} (x)+ $
$ +\big(\frac{1}{1-x}+\frac{1}{x+1} -\frac{1}{x+ \frac1g} + \frac{1}{x} - \frac{1}{x+\frac{1}{g+1}}\big) \mathbf 1_{[\frac{1-\alpha}{2\alpha-1},1]} (x) $
$ \boldsymbol{\alpha} $ Density $ \boldsymbol{f_\alpha} $
$ [\frac12, g) $ $ \frac{1}{1-x} \mathbf 1_{[1-\alpha, \alpha]}(x) + \frac1{x(1-x)} \mathbf 1_{[\alpha, \frac{1-\alpha}{\alpha} ]} (x)+ \frac{x^2+1}{x(1-x^2)} \mathbf 1_{[\frac{1-\alpha}{\alpha},1]} (x) $
$ [g, \frac23) $ $ \big(\frac{1}{1-x} + \frac{1}{x+\frac{1}{g-1}}\big)\mathbf 1_{[1-\alpha, \frac{2\alpha-1}{\alpha}]} (x) + \frac1{1-x} \mathbf 1_{[\frac{2\alpha-1}{\alpha}, \alpha ]} (x)+ $
$ + \big(\frac{1}{1-x} + \frac{1}{x} -\frac{1}{x+\frac{1}{g}}\big) \mathbf 1_{[\alpha,\frac{2\alpha-1}{1-\alpha}]} (x)+ \frac{x^2+1}{x(1-x^2)} \mathbf 1_{[\frac{2\alpha-1}{1-\alpha},1]} (x) $
$ [\frac23, \frac12 \sqrt{2}] $ $ \big(\frac{1}{1-x} + \frac{1}{x+\frac{1}{g-1}}\big)\mathbf 1_{[1-\alpha, \frac{2\alpha-1}{\alpha}]} (x) + \frac1{1-x} \mathbf 1_{[\frac{2\alpha-1}{\alpha}, \alpha ]} (x) + \big(\frac{1}{1-x} + \frac{1}{x} -\frac{1}{x+\frac{1}{g}}\big) \mathbf 1_{[\alpha,\frac{1-\alpha}{2\alpha-1}]} (x)+ $
$ +\big(\frac{1}{1-x}+\frac{1}{x+1} -\frac{1}{x+ \frac1g} + \frac{1}{x} - \frac{1}{x+\frac{1}{g+1}}\big) \mathbf 1_{[\frac{1-\alpha}{2\alpha-1},1]} (x) $
[1]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[2]

Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3797-3816. doi: 10.3934/dcds.2021017

[3]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[4]

Wei Wang, Degen Huang, Haitao Yu. Word sense disambiguation based on stretchable matching of the semantic template. Mathematical Foundations of Computing, 2021, 4 (1) : 1-13. doi: 10.3934/mfc.2020022

[5]

Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004

[6]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[7]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404

[8]

Enkhbat Rentsen, N. Tungalag, J. Enkhbayar, O. Battogtokh, L. Enkhtuvshin. Application of survival theory in Mining industry. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 443-448. doi: 10.3934/naco.2020036

[9]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[10]

Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226

[11]

Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021053

[12]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[13]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[14]

Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021025

[15]

Ruchika Sehgal, Aparna Mehra. Worst-case analysis of Gini mean difference safety measure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1613-1637. doi: 10.3934/jimo.2020037

[16]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395

[17]

Seung-Yeal Ha, Myeongju Kang, Bora Moon. Collective behaviors of a Winfree ensemble on an infinite cylinder. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2749-2779. doi: 10.3934/dcdsb.2020204

[18]

Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3367-3387. doi: 10.3934/dcds.2020409

[19]

Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234

[20]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (63)
  • HTML views (105)
  • Cited by (0)

[Back to Top]