Advanced Search
Article Contents
Article Contents

Energy transfer model and large periodic boundary value problem for the quintic nonlinear Schrödinger equations

This work was supported by JSPS KAKENHI Grant Number 18H01129

Abstract Full Text(HTML) Related Papers Cited by
  • We study the dynamics and energy exchanges between a linear oscillator and a nonlinear interaction state for the one dimensional, quintic nonlinear Schrödinger equation. Grébert and Thomann [9] proved that there exist solutions with initial data built on four Fourier modes, that confirm the conservative exchange of wave energy. Captured multi resonance in multiple Fourier modes, we simulate a similar energy exchange in long-period waves.

    Mathematics Subject Classification: Primary: 35Q55; Secondary: 42B37.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part Ⅰ: Schrödinger equation, Geom. Funct. Anal., 3 (1993), 107-156.  doi: 10.1007/BF01896020.
    [2] T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Anal., 14 (1990), 807-836.  doi: 10.1016/0362-546X(90)90023-A.
    [3] J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\mathbb{R}$ and $\mathbb{T}$, J. Amer. Math. Soc., 16 (2003), 705-749.  doi: 10.1090/S0894-0347-03-00421-1.
    [4] J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math., 181 (2010), 39-113.  doi: 10.1007/s00222-010-0242-2.
    [5] B. G. Dodson, Global well-posedness for the defocusing, quintic nonlinear Schrödinger equation in one dimension for low regularity data, Int. Math. Res. Not. IMRN, 2012 (2012), 870-893.  doi: 10.1093/imrn/rnr037.
    [6] B. Dodson, Global well-posedness and scattering for the defocusing, $L^2$-critical, nonlinear Schrödinger equation when $d = 1$, Amer. J. Math., 138 (2016), 531-569.  doi: 10.1353/ajm.2016.0016.
    [7] E. FaouP. Germain and Z. Hani, The weakly nonlinear large-box limit of the 2D cubic nonlinear Schrödinger equation, J. Amer. Math. Soc., 29 (2016), 915-982.  doi: 10.1090/jams/845.
    [8] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Functional Analysis, 32 (1979), 1-32.  doi: 10.1016/0022-1236(79)90076-4.
    [9] B. Grébert and L. Thomann, Resonant dynamics for the quintic nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 455-477.  doi: 10.1016/j.anihpc.2012.01.005.
    [10] G. H. Hardy and  E. M. WrightAn Introduction to the Theory of Numbers, The Clarendon Press, Oxford University Press, New York, 1979. 
    [11] M. B. Nathanson, Additive Number Theory. Inverse Problems and the Geometry of Sumsets, Graduate Texts in Mathematics, 165, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4757-3845-2.
    [12] H. Takaoka, Energy transfer model for the derivative nonlinear Schrödinger equations on the torus, Discrete Contin. Dyn. Syst., 37 (2017), 5819-5841.  doi: 10.3934/dcds.2017253.
    [13] Y. Tsutsumi, $\mathrm{L}^{2}$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac., 30 (1987), 115-125. 
  • 加载中

Article Metrics

HTML views(233) PDF downloads(210) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint