February  2021, 41(2): 621-656. doi: 10.3934/dcds.2020291

Singular solutions of a Lane-Emden system

1. 

Department of Mathematics, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

2. 

Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Postal Code: 34149-16818, Qazvin, Iran

* Corresponding author: A. Razani

This work was done when the second author visited the Department of Mathematics, University of Manitoba on a sabbatical leave from Imam Khomeini International University. He appreciates the Department of Mathematics, University of Manitoba, for the hospitality and Prof. C. Cowan for his support.

Received  November 2019 Revised  May 2020 Published  February 2021 Early access  August 2020

In this work we consider the existence of positive singular solutions
$ \begin{equation} \left\{ \begin{array}{lcl} \hfill -\Delta u_1 & = & \lambda_1 | \nabla u_2|^p \qquad \mbox{ in } \Omega, \\ \hfill -\Delta u_2 & = & \lambda_2 | \nabla u_1|^q \qquad \mbox{ in } \Omega, \\ \hfill u_1 = u_2 & = & 0 \hfill \mbox{ on } \partial \Omega, \end{array}\right.\;\;\;\;\;\;\;(1) \end{equation} $
where
$ \Omega $
is small
$ C^2 $
perturbation of the unit ball
$ B_1 $
in
$ \mathbb{R}^N $
and
$ \lambda_i $
are positive constants. Under suitable conditions on
$ p $
and
$ q $
we prove the existence of positive singular solutions of (1). We also examine the case where one or both of
$ u_1,u_2 $
are Hölder continuous.
Citation: Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291
References:
[1]

A. AghajaniC. Cowan and S. H. Lui, Existence and regularity of nonlinear advection problems, Nonlinear Analysis, 166 (2018), 19-47.  doi: 10.1016/j.na.2017.10.007.

[2]

A. AghajaniC. Cowan and S. H. Lui, Singular solutions of elliptic equations involving nonlinear gradient terms on perturbations of the ball, J. Diff. Eqns., 264 (2018), 2865-2896.  doi: 10.1016/j.jde.2017.11.009.

[3]

D. ArcoyaL. BoccardoT. Leonori and A. Porretta, Some elliptic problems with singular natural growth lower order terms, J. Diff. Eqns., 249 (2010), 2771-2795.  doi: 10.1016/j.jde.2010.05.009.

[4]

D. ArcoyaJ. CarmonaT. LeonoriP. J. Martinez-AparicioL. Orsina and F. Petitta, Existence and non-existence of solutions for singular quadratic quasilinear equations, J. Diff. Eqns., 246 (2009), 4006-4042.  doi: 10.1016/j.jde.2009.01.016.

[5]

D. ArcoyaC. De CosterL. Jeanjean and K. Tanaka, Remarks on the uniqueness for quasilinear elliptic equations with quadratic growth conditions, J. Math. Anal. Appl., 420 (2014), 772-780.  doi: 10.1016/j.jmaa.2014.06.007.

[6]

D. ArcoyaC. De CosterL. Jeanjean and K. Tanaka, Continuum of solutions for an elliptic problem with critical growth in the gradient, J. Funct. Anal., 268 (2015), 2298-2335.  doi: 10.1016/j.jfa.2015.01.014.

[7]

A. BensoussanL. Boccardo and F. Murat, On a nonlinear partial differential equation having natural growth terms and unbounded solution, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 347-364.  doi: 10.1016/S0294-1449(16)30342-0.

[8]

M.-F. Bidaut VéronM. Garcia-Huidobro and L. Véron, Remarks on some quasilinear equations with gradient terms and measure data, Contemp. Math., 595 (2013), 31-53. 

[9]

M.-F. Bidaut-VéronM. Garcia-Huidobro and L. Véron, Local and global properties of solutions of quasilinear Hamilton-Jacobi equations, J. Funct. Anal., 267 (2014), 3294-3331.  doi: 10.1016/j.jfa.2014.07.003.

[10]

M.-F. Bidaut VéronM. Garcia-Huidobro and L. Véron, Boundary singularities of positive solutions of quasilinear Hamilton-Jacobi equations, Calc. Var., 54 (2015), 3471-3515.  doi: 10.1007/s00526-015-0911-5.

[11]

J. Ching and F. Cirstea, Existence and classification of singular solutions to nonlinear elliptic equations with a gradient term, Anal. PDE, 8 (2015), 1931-1962.  doi: 10.2140/apde.2015.8.1931.

[12]

J. M. Coron, Topologie et cas limite des injections de Sobolev, C.R. Acad. Sc. Paris Sér. I Math., 299 (1984), 209-212. 

[13]

C. Cowan and A. Razani, Singular solutions of a $p$-Laplace equation involving the gradient, J. Diff. Eqns., 269 (2020), 3914-3942. doi: 10.1016/j.jde.2020.03.017.

[14]

J. DávilaM. del Pino and M. Musso, The supercritical Lane-Emden-Fowler equation in exterior domains, Comm. Partial Differential Equations, 32 (2007), 1225-1243.  doi: 10.1080/03605300600854209.

[15]

J. DávilaM. del PinoM. Musso and J. Wei, Fast and slow decay solutions for supercritical elliptic problems in exterior domains, Calc. Var., 32 (2008), 453-480.  doi: 10.1007/s00526-007-0154-1.

[16]

J. DávilaM. del PinoM. Musso and J. Wei, Standing waves for supercritical nonlinear Schrödinger equations, J. Diff. Eqns., 236 (2007), 164-198.  doi: 10.1016/j.jde.2007.01.016.

[17]

J. Dávila and L. Dupaigne, Perturbing singular solutions of the Gelfand problem, Commun. Contemp. Math., 9 (2007), 639-680.  doi: 10.1142/S0219199707002575.

[18]

M. del Pino and M. Musso, Super-critical bubbling in elliptic boundary value problems, Variational problems and related topics, (Kyoto, 2002), 1307 (2003), 85-108.

[19]

M. del PinoP. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri-Corons problem, Calc. Var., 16 (2003), 113-145.  doi: 10.1007/s005260100142.

[20]

M. del PinoP. Felmer and M. Musso, Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries, Bull. London Math. Society, 35 (2003), 513-521.  doi: 10.1112/S0024609303001942.

[21]

V. Ferone and F. Murat, Nonlinear problems having natural growth in the gradient: An existence result when the source terms are small, Nonlinear Anal., 42 (2000), 13309-1326.  doi: 10.1016/S0362-546X(99)00165-0.

[22]

V. Ferone, M. R. Posteraro and J. M. Rakotoson, $L^\infty$-estimates for nonlinear elliptic problems with $p$-growth in the gradient, J. Inequal. Appl., 3 (1999), 109-125..

[23]

M. Ghergu and V. D. Rǎdulescu, Nonlinear PDEs, Mathematical Models in Bilology, Chemistry and Popoulation Genetics, Springer-Verlag, Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-22664-9.

[24]

D. GiachettiF. Petitta and S. Segura de León, Elliptic equations having a singular quadratic gradient term and a changing sign datum, Commun. Pure Appl. Anal., 11 (2012), 1875-1895.  doi: 10.3934/cpaa.2012.11.1875.

[25]

D. GiachettiF. Petitta and S. Segura de León, A priori estimates for elliptic problems with a strongly singular gradient term and a general datum, Diff. Integral Eqns., 26 (2013), 913-948. 

[26]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.

[27]

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, , Clasiics in Mathematics, Springer-Verlag, Berlin, 2001.

[28]

N. GrenonF. Murat and A. Porretta, Existence and a priori estimate for elliptic problems with subquadratic gradient dependent terms, C. R. Acad. Sci. Paris, 342 (2006), 23-28.  doi: 10.1016/j.crma.2005.09.027.

[29]

N. Grenon and C. Trombetti, Existence results for a class of nonlinear elliptic problems with $p$-growth in the gradient, Nonlinear Anal., 52 (2003), 931-942.  doi: 10.1016/S0362-546X(02)00143-8.

[30]

J. M. Lasry and P.-L. Lions, Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints, Math. Ann., 283 (1989), 583-630.  doi: 10.1007/BF01442856.

[31]

D. Lazard, Quantifier elimination: Optimal solution for two classical examples, J. Symbolic Comput., 5 (1988), 261-266.  doi: 10.1016/S0747-7171(88)80015-4.

[32]

P.-L. Lions, Quelques remarques sur les problemes elliptiques quasilineaires du second ordre, J. Anal. Math., 45 (1985), 234-254.  doi: 10.1007/BF02792551.

[33]

M. Marcus and P.-T. Nguyen, Elliptic equations with nonlinear absorption depending on the solution and its gradient, Proc. London Math. Soc., 111 (2015), 205-239.  doi: 10.1112/plms/pdv020.

[34]

R. Mazzeo and F. Pacard, A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis, J. Diff. Geom., 44 (1996), 331-370.  doi: 10.4310/jdg/1214458975.

[35]

P.-T. Nguyen, Isolated singularities of positive solutions of elliptic equations with weighted gradient term, Anal. PDE, 9 (2016), 1671-1692.  doi: 10.2140/apde.2016.9.1671.

[36]

P.-T. Nguyen and L. Véron, Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi equations, J. Funct. Anal., 263 (2012), 1487-1538.  doi: 10.1016/j.jfa.2012.05.019.

[37]

F. Pacard and T. Rivière, Linear and Nonlinear Aspects of Vortices: The Ginzburg Landau Model, Progress in Nonlinear Differential Equations and their Applications, 39. Birkhäuser Boston, Inc., Boston, MA, 2000. doi: 10.1007/978-1-4612-1386-4.

[38]

D. Passaseo, Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains, J. Funct. Anal., 114 (1993), 97-105.  doi: 10.1006/jfan.1993.1064.

[39]

S. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet. Math. Dokl., 6 (1965), 1408-1411. 

[40]

A. Porretta and S. Segura de Leon, Nonlinear elliptic equations having a gradient term with natural growth, J. Math. Pures Appl., 85 (2006), 465-492.  doi: 10.1016/j.matpur.2005.10.009.

[41]

E. L. Rees, Graphical discussion of the roots of a quartic equation, The American Mathematical Monthly, 29 (1922), 51-55. 10.2307/297280. doi: 10.1080/00029890.1922.11986100.

[42]

M. Struwe, Variational Methods-Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-662-02624-3.

[43]

Z. Zhang, Boundary blow-up elliptic problems with nonlinear gradient terms, J. Diff. Eqns., 228 (2006), 661-684.  doi: 10.1016/j.jde.2006.02.003.

show all references

References:
[1]

A. AghajaniC. Cowan and S. H. Lui, Existence and regularity of nonlinear advection problems, Nonlinear Analysis, 166 (2018), 19-47.  doi: 10.1016/j.na.2017.10.007.

[2]

A. AghajaniC. Cowan and S. H. Lui, Singular solutions of elliptic equations involving nonlinear gradient terms on perturbations of the ball, J. Diff. Eqns., 264 (2018), 2865-2896.  doi: 10.1016/j.jde.2017.11.009.

[3]

D. ArcoyaL. BoccardoT. Leonori and A. Porretta, Some elliptic problems with singular natural growth lower order terms, J. Diff. Eqns., 249 (2010), 2771-2795.  doi: 10.1016/j.jde.2010.05.009.

[4]

D. ArcoyaJ. CarmonaT. LeonoriP. J. Martinez-AparicioL. Orsina and F. Petitta, Existence and non-existence of solutions for singular quadratic quasilinear equations, J. Diff. Eqns., 246 (2009), 4006-4042.  doi: 10.1016/j.jde.2009.01.016.

[5]

D. ArcoyaC. De CosterL. Jeanjean and K. Tanaka, Remarks on the uniqueness for quasilinear elliptic equations with quadratic growth conditions, J. Math. Anal. Appl., 420 (2014), 772-780.  doi: 10.1016/j.jmaa.2014.06.007.

[6]

D. ArcoyaC. De CosterL. Jeanjean and K. Tanaka, Continuum of solutions for an elliptic problem with critical growth in the gradient, J. Funct. Anal., 268 (2015), 2298-2335.  doi: 10.1016/j.jfa.2015.01.014.

[7]

A. BensoussanL. Boccardo and F. Murat, On a nonlinear partial differential equation having natural growth terms and unbounded solution, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 347-364.  doi: 10.1016/S0294-1449(16)30342-0.

[8]

M.-F. Bidaut VéronM. Garcia-Huidobro and L. Véron, Remarks on some quasilinear equations with gradient terms and measure data, Contemp. Math., 595 (2013), 31-53. 

[9]

M.-F. Bidaut-VéronM. Garcia-Huidobro and L. Véron, Local and global properties of solutions of quasilinear Hamilton-Jacobi equations, J. Funct. Anal., 267 (2014), 3294-3331.  doi: 10.1016/j.jfa.2014.07.003.

[10]

M.-F. Bidaut VéronM. Garcia-Huidobro and L. Véron, Boundary singularities of positive solutions of quasilinear Hamilton-Jacobi equations, Calc. Var., 54 (2015), 3471-3515.  doi: 10.1007/s00526-015-0911-5.

[11]

J. Ching and F. Cirstea, Existence and classification of singular solutions to nonlinear elliptic equations with a gradient term, Anal. PDE, 8 (2015), 1931-1962.  doi: 10.2140/apde.2015.8.1931.

[12]

J. M. Coron, Topologie et cas limite des injections de Sobolev, C.R. Acad. Sc. Paris Sér. I Math., 299 (1984), 209-212. 

[13]

C. Cowan and A. Razani, Singular solutions of a $p$-Laplace equation involving the gradient, J. Diff. Eqns., 269 (2020), 3914-3942. doi: 10.1016/j.jde.2020.03.017.

[14]

J. DávilaM. del Pino and M. Musso, The supercritical Lane-Emden-Fowler equation in exterior domains, Comm. Partial Differential Equations, 32 (2007), 1225-1243.  doi: 10.1080/03605300600854209.

[15]

J. DávilaM. del PinoM. Musso and J. Wei, Fast and slow decay solutions for supercritical elliptic problems in exterior domains, Calc. Var., 32 (2008), 453-480.  doi: 10.1007/s00526-007-0154-1.

[16]

J. DávilaM. del PinoM. Musso and J. Wei, Standing waves for supercritical nonlinear Schrödinger equations, J. Diff. Eqns., 236 (2007), 164-198.  doi: 10.1016/j.jde.2007.01.016.

[17]

J. Dávila and L. Dupaigne, Perturbing singular solutions of the Gelfand problem, Commun. Contemp. Math., 9 (2007), 639-680.  doi: 10.1142/S0219199707002575.

[18]

M. del Pino and M. Musso, Super-critical bubbling in elliptic boundary value problems, Variational problems and related topics, (Kyoto, 2002), 1307 (2003), 85-108.

[19]

M. del PinoP. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri-Corons problem, Calc. Var., 16 (2003), 113-145.  doi: 10.1007/s005260100142.

[20]

M. del PinoP. Felmer and M. Musso, Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries, Bull. London Math. Society, 35 (2003), 513-521.  doi: 10.1112/S0024609303001942.

[21]

V. Ferone and F. Murat, Nonlinear problems having natural growth in the gradient: An existence result when the source terms are small, Nonlinear Anal., 42 (2000), 13309-1326.  doi: 10.1016/S0362-546X(99)00165-0.

[22]

V. Ferone, M. R. Posteraro and J. M. Rakotoson, $L^\infty$-estimates for nonlinear elliptic problems with $p$-growth in the gradient, J. Inequal. Appl., 3 (1999), 109-125..

[23]

M. Ghergu and V. D. Rǎdulescu, Nonlinear PDEs, Mathematical Models in Bilology, Chemistry and Popoulation Genetics, Springer-Verlag, Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-22664-9.

[24]

D. GiachettiF. Petitta and S. Segura de León, Elliptic equations having a singular quadratic gradient term and a changing sign datum, Commun. Pure Appl. Anal., 11 (2012), 1875-1895.  doi: 10.3934/cpaa.2012.11.1875.

[25]

D. GiachettiF. Petitta and S. Segura de León, A priori estimates for elliptic problems with a strongly singular gradient term and a general datum, Diff. Integral Eqns., 26 (2013), 913-948. 

[26]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.

[27]

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, , Clasiics in Mathematics, Springer-Verlag, Berlin, 2001.

[28]

N. GrenonF. Murat and A. Porretta, Existence and a priori estimate for elliptic problems with subquadratic gradient dependent terms, C. R. Acad. Sci. Paris, 342 (2006), 23-28.  doi: 10.1016/j.crma.2005.09.027.

[29]

N. Grenon and C. Trombetti, Existence results for a class of nonlinear elliptic problems with $p$-growth in the gradient, Nonlinear Anal., 52 (2003), 931-942.  doi: 10.1016/S0362-546X(02)00143-8.

[30]

J. M. Lasry and P.-L. Lions, Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints, Math. Ann., 283 (1989), 583-630.  doi: 10.1007/BF01442856.

[31]

D. Lazard, Quantifier elimination: Optimal solution for two classical examples, J. Symbolic Comput., 5 (1988), 261-266.  doi: 10.1016/S0747-7171(88)80015-4.

[32]

P.-L. Lions, Quelques remarques sur les problemes elliptiques quasilineaires du second ordre, J. Anal. Math., 45 (1985), 234-254.  doi: 10.1007/BF02792551.

[33]

M. Marcus and P.-T. Nguyen, Elliptic equations with nonlinear absorption depending on the solution and its gradient, Proc. London Math. Soc., 111 (2015), 205-239.  doi: 10.1112/plms/pdv020.

[34]

R. Mazzeo and F. Pacard, A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis, J. Diff. Geom., 44 (1996), 331-370.  doi: 10.4310/jdg/1214458975.

[35]

P.-T. Nguyen, Isolated singularities of positive solutions of elliptic equations with weighted gradient term, Anal. PDE, 9 (2016), 1671-1692.  doi: 10.2140/apde.2016.9.1671.

[36]

P.-T. Nguyen and L. Véron, Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi equations, J. Funct. Anal., 263 (2012), 1487-1538.  doi: 10.1016/j.jfa.2012.05.019.

[37]

F. Pacard and T. Rivière, Linear and Nonlinear Aspects of Vortices: The Ginzburg Landau Model, Progress in Nonlinear Differential Equations and their Applications, 39. Birkhäuser Boston, Inc., Boston, MA, 2000. doi: 10.1007/978-1-4612-1386-4.

[38]

D. Passaseo, Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains, J. Funct. Anal., 114 (1993), 97-105.  doi: 10.1006/jfan.1993.1064.

[39]

S. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet. Math. Dokl., 6 (1965), 1408-1411. 

[40]

A. Porretta and S. Segura de Leon, Nonlinear elliptic equations having a gradient term with natural growth, J. Math. Pures Appl., 85 (2006), 465-492.  doi: 10.1016/j.matpur.2005.10.009.

[41]

E. L. Rees, Graphical discussion of the roots of a quartic equation, The American Mathematical Monthly, 29 (1922), 51-55. 10.2307/297280. doi: 10.1080/00029890.1922.11986100.

[42]

M. Struwe, Variational Methods-Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-662-02624-3.

[43]

Z. Zhang, Boundary blow-up elliptic problems with nonlinear gradient terms, J. Diff. Eqns., 228 (2006), 661-684.  doi: 10.1016/j.jde.2006.02.003.

[1]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Hénon equation involving a nonlinear gradient term. Communications on Pure and Applied Analysis, 2022, 21 (1) : 141-158. doi: 10.3934/cpaa.2021172

[2]

Hatem Hajlaoui, Abdellaziz Harrabi, Foued Mtiri. Liouville theorems for stable solutions of the weighted Lane-Emden system. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 265-279. doi: 10.3934/dcds.2017011

[3]

Tianyu Liao. The regularity lifting methods for nonnegative solutions of Lane-Emden system. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1681-1698. doi: 10.3934/cpaa.2021036

[4]

Philip Korman, Junping Shi. On lane-emden type systems. Conference Publications, 2005, 2005 (Special) : 510-517. doi: 10.3934/proc.2005.2005.510

[5]

Zhijun Zhang. Large solutions of semilinear elliptic equations with a gradient term: existence and boundary behavior. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1381-1392. doi: 10.3934/cpaa.2013.12.1381

[6]

Wenjing Chen, Louis Dupaigne, Marius Ghergu. A new critical curve for the Lane-Emden system. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2469-2479. doi: 10.3934/dcds.2014.34.2469

[7]

Ze Cheng, Genggeng Huang. A Liouville theorem for the subcritical Lane-Emden system. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1359-1377. doi: 10.3934/dcds.2019058

[8]

Wenxiong Chen, Congming Li. An integral system and the Lane-Emden conjecture. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1167-1184. doi: 10.3934/dcds.2009.24.1167

[9]

Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795

[10]

Jingbo Dou, Fangfang Ren, John Villavert. Classification of positive solutions to a Lane-Emden type integral system with negative exponents. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6767-6780. doi: 10.3934/dcds.2016094

[11]

Lu Chen, Guozhen Lu, Yansheng Shen. Sharp subcritical Sobolev inequalities and uniqueness of nonnegative solutions to high-order Lane-Emden equations on $ \mathbb{S}^n $. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2799-2817. doi: 10.3934/cpaa.2022073

[12]

Ru-Yu Lai, Laurel Ohm. Inverse problems for the fractional Laplace equation with lower order nonlinear perturbations. Inverse Problems and Imaging, 2022, 16 (2) : 305-323. doi: 10.3934/ipi.2021051

[13]

Daniela Giachetti, Francesco Petitta, Sergio Segura de León. Elliptic equations having a singular quadratic gradient term and a changing sign datum. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1875-1895. doi: 10.3934/cpaa.2012.11.1875

[14]

Samia Challal, Abdeslem Lyaghfouri. Hölder continuity of solutions to the $A$-Laplace equation involving measures. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1577-1583. doi: 10.3934/cpaa.2009.8.1577

[15]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure and Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

[16]

Marius Ghergu, Vicenţiu Rădulescu. Nonradial blow-up solutions of sublinear elliptic equations with gradient term. Communications on Pure and Applied Analysis, 2004, 3 (3) : 465-474. doi: 10.3934/cpaa.2004.3.465

[17]

Shota Sato, Eiji Yanagida. Asymptotic behavior of singular solutions for a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 4027-4043. doi: 10.3934/dcds.2012.32.4027

[18]

Jong-Shenq Guo, Bei Hu. Blowup rate estimates for the heat equation with a nonlinear gradient source term. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 927-937. doi: 10.3934/dcds.2008.20.927

[19]

Soohyun Bae. Classification of positive solutions of semilinear elliptic equations with Hardy term. Conference Publications, 2013, 2013 (special) : 31-39. doi: 10.3934/proc.2013.2013.31

[20]

Giuseppe Maria Coclite, Mario Michele Coclite. Positive solutions of an integro-differential equation in all space with singular nonlinear term. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 885-907. doi: 10.3934/dcds.2008.22.885

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (307)
  • HTML views (247)
  • Cited by (3)

Other articles
by authors

[Back to Top]